Improvements in CAM5 : Moist Turbulence, Shallow Convection, and Cloud Macrophysics

AMWG Meeting

Feb. 10. 2010

Sungsu Park, Chris Bretherton, and Phil Rasch

CGD.NCAR

University of Washington, Seattle, Washington Pacific Northwest National Laboratory, Richland, Washington

Physical Processes in CAM5

MOIST TURBULENCE SCHEME in CAM5

Ri

SI

STI

ΕI

ΤI

CL

S

е

W_e

$$\frac{\partial \overline{A}}{\partial t} = -\frac{\partial}{\partial z} \overline{w'A'} = \frac{\partial}{\partial z} \left(K \frac{\partial \overline{A}}{\partial z} \right)$$

K : eddy diffusivity

: Moist Richardson Number : Stable Interface : Stably Turbulent Interface : Entrainment Interface : Turbulent Interface : Stably Turbulent Layer STL : Convective Layer : Turbulent length scale : Stability function (fcn of Ri) : TKE : Entrainment rate

Moist Turbulence Scheme in CAM5

- Diagnostic TKE-based 1st order K diffusion scheme with entrainment param.
- Stratus-Top LW Cooling and In-Stratus Condensation Heating into TKE
 - Treatment of Stratus-Radiation-Turbulence Interactions
 - Handling of the 2nd aerosol indirect effect
 - Removal of the stability-based KH stratus fraction
- Activate in any layers above as well as within PBL
- Compared to CAM4 PBL scheme,
 - Much better performance in cloud-topped regime
 - Similar or superior performance in dry stable and convective regimes

Cloud-Radiation-Turbulence Interactions

> Deeper PBL in Sc-Regime

Low Cloud Amount. JJA.

Fog Amount. JJA.

Sustain Drier Lower-PBL

SHALLOW CONVECTION SCHEME in CAM5

$$w'A' = \rho \cdot M_u \cdot (A_u - A)$$

 M_u : updraft mass flux A_u : updraft scalar

IN	: Convective INhibition
CL	: Lifting Condensation Level
FC	: Level of Free Convection
NB	: Level of Neutral Buoyancy
/ _u	: Updraft vertical velocity
u	: Updraft fractional area

พ a

Shallow Convection Scheme in CAM5

- An entraining-detraining buoyancy-sorting updraft plume with a penetrative entrainment parameterization
 - Mass flux closure based on TKE and Convective Inhibition (CIN)
 - Computes cumulus fraction and LWC, vertical velocity, updraft mass flux
 - Direct influence on the global radiation budget
- (Much) Less sensitive to vertical resolution than CAM4
- Simulate the 'real' convective activity

Shallow Convective Mass Flux at Cloud Base. Annual.

CAM5

CAM4

Inconsistency between 'Stratus Fraction' and 'In-Stratus LWC' in CAM4

- \rightarrow distorts LW cooling profile
- \rightarrow too strong inversion at the PBL top
- \rightarrow too weak entrainment rate
- \rightarrow too shallow and moist PBL

Macrophysics Scheme in CAM5

- Enhance consistency between stratus fraction and in-stratus LWC
- Remove 'empty' (a>0, q_{I,cloud}=0) and 'dense'(a=0, q_{I,cloud}>0) stratus
- Liquid stratus fraction based on triangular PDF of q_t
- Removal of KH's stability based stratus fraction
- Separate treatment of liquid condensation and ice sublimation
 Separate diagnose of liquid and ice stratus fractions
- Cumulus is non-overlapped with stratus in each layer.
- Cumulus has its own in-cumulus LWC.
- Cumulus is radiatively active.

Horizontal Geometry of Clouds in CAM

CAM5 – CAM4. DJF

SUMMARY

- CAM5 has much better physics and interactions among the physics than CAM4, without arbitrary kludges (e.g., stability based LCA etc.).
- CAM5 can simulate many important features in a physically reasonable way, especially the ones associated with cloud processes themselves and cloudclimate interactions (e.g., marine stratocumulus clouds, cumulus, cloud-SST interaction, cloud-sea ice interaction, 1st and 2nd aerosol indirect effects, etc.).
- Some important biases in CAM5:
 - Too cold near surface air over the Northern Continent in DJF.

Improvements of Cloud Treatment in CAM5

- Simulation of 'Interactive Cloud Droplet Number' as well as 'LWC/IWC'

 New 2-Moment Microphysics and Modal Aerosol Model

$$\Delta F_{R,inv} = f_R \cdot \Delta F_{R,LW}$$