Seasonal Variation of Low Clouds in Track 1 and Track 5 CAM

Minghua Zhang (Stony Brook University) Cecile Hannay (NCAR) and the CAM Development Team Wuyin Lin (Brookhaven National Laboratory)

SW CRF

Track 1

JJA

f40_amip_t1_01 (yrs 1978-2002)

Min = -205.28 Max = -0.52 -170-150-135-120-105 -90 -75 -60 -45 -30 -20 -15 -10 -5 0 CERES2

Min = -156.06 Max = 5.98

-170-150-135-120-105 -90 -75 -60 -45 -30 -20 -15 -10 -5 0 f40_amip_t1_01 - CERES2

$V_{111} = -124.19$ $V_{10X} = -91.01$									
-100 -75 -50 -30	-20 -10	-5 () 5	10	20	30	50	75 100	

Track 5

JJA

Min = -156.06 Max = 5.98 -170-150-135-120-105 -90 -75 -60 -45 -30 -20 -15 -10 -5 0

f40_amip_t5_02b - CERES2

-100-75 -50 -30 -20 -10 -5 0 5 10 20 30 50 75 100

Lin, Zhang, Loeb (2009, JCL)

Cloud Amount and Liquid Water Path

CLDLOW

Track 1

OBS

40N

30N

20N

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 :

10N 150W

Latitude

140W

130W Longitude

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 9

120W

110W

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Track 5

Track 1 Low Clouds

Track 5 Low Clouds

In-Cloud Liquid Path

OBS

^{0 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 -}

0 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90

Latitude

0 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 902

0 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 9020

Other features

PBL Height

OBS

500 600 700 800 900 10001 1001 2001 3001 4001 5001 6001 70

100150200250300350400450500650600650700750800850900950

1001502002503003504004505065060065070075080085090095000

100150200250300350400450500550600850700750800850900950

100150200250300350400450500550800850700750800850900950

(Lin, Zhang, Loeb 2010, JCL)

Low Tropospheric Stability

Inversion Strength

CAM PSL and Lowest Model Level Winds

OBS

CAM3.35 (Track1)

CAM3.1

Zhang and Bretherton (2008, JCL)

Low Clouds Simulated in SCM Using Idealized Forcing

Track 1 (CAM3.5.35)

CAM3.1

Track 1

CFMIP-GCSS Intercomparison of LES and SCMs

<u>CGILS Meeting</u> <u>March 1-2, 2010</u> <u>Stony Brook, New York</u>

http://somas.stonybrook.edu/cgils

Summary

- 1. The models simulated the sign of seasonal variation of MBL cloud amount. The amount in winter is too lower; the in-cloud liquid in is too high. These errors compensate to produce a good SW cloud forcing.
- 2. Track 5 is an improvement to Track 1.
- 3. The seasonal cycle of the large-scale conditions is well simulated, but the inversion strength is not. This is likely related to the boundary layer height to be too lower.
- 4. We need to understand the interaction of the parameterization components to better understand the model