Modeling spatial population scenarios

Bryan Jones and Brian O'Neill CGD and ISP, NCAR LMWG-BGCWG Meeting 8-10 February 2010

Introduction and Outline

- The iPETS integrated assessment model
 - Land use and spatial population
- Toward a spatial scenario generator
 - Understand a leading methodology (IIASA)
 - Apply to hypothetical, 1-D population distribution
 - Test against historical observations
 - Explore modifications
 - Goals for 2010

iPETS: Global, regionally disaggregated IA Model (Integrated Population-Economy-Technology-Science Model)

iPETS: Global, regionally disaggregated IA Model (Integrated Population-Economy-Technology-Science Model)

IIASA Methodology

- 1. Cells are classified as rural or urban.
- 2. Population change regime (r) is defined for rural and urban areas.
- 3. Potential is calculated for each cell according to:

$$W_i = \sum_{j=1}^m \frac{P_{j,u}}{D_{ij}^2} + \sum_{k=1}^n \frac{P_{k,r}}{D_{ik}^2}$$

4. For each time step, additional population is allocated proportional to cell potential such that:

$$P_i^{t+1} = P_i^t + (P_A^{t+1} - P_A^t) \frac{v_i^t}{\sum_{j=1}^{J_A} v_j^t}$$

- Calculation of potential for cell i does not include the population of cell i.
- Rural/urban population gain/loss is allocated separately.
- Cell potential used as a measure of attractiveness: geographic proximity to population is a proxy for all socio-economic characteristics that determine "attractiveness".

Application to Hypothetical Population Distribution

Tested the model on a hypothetical 1-dimensional population distribution to explore general trends in population allocation and the implications of changes in certain parameters.

Findings

- When population growth is positive, the model tends to move towards a uniform spatial allocation.
- When population growth is negative, the model tends to move towards a concentrated spatial allocation.
- Population growth generally occurs in areas that are currently defined as urban, or are immediately adjacent to existing urban areas.
- The classification of a cell as urban/rural has a dramatic affect on the projected population in that cell, largely a result of exogenous urban/rural growth projections.

Test Against Historical Data

Using the state of Iowa as the study region, the IIASA methodology is applied in an attempt to replicate historical data.

- Areal units are counties (in place of grid cells).
- Time period: 1950-2000
 - Observed county population in 1950 serves as the initial distribution.
- Observed decennial census data (1950-2000) are used to determine *r*.
 - Total urban/rural population change are therefore fixed at the observed levels.
- An attempt to replicate 2000 county-level population structure moving forward from 1950.
- The model was run seven times using various methods to re-classify counties as urban or rural over time.

The results in this presentation consider the population density threshold of 100 persons/mi² to classify/reclassify a county as urban or rural.

Observed Population: 1950

Observed Population: 2000

JACKS ON

Observed % Change Population: 1950 -2000

Results: Prediction Error

Historical Test: Findings and Implications

- Population change is allocated too uniformly within the urban and rural regions.
 - Population growth is under-estimated in some urban corridors.
 - Population loss is under-estimated in the most remote rural counties.
- Difficult for rural cells to reach the density threshold necessary to be reclassified.
 - Due to low rate of rural growth.
 - The model is likely to miss potential suburban growth that occurs in rural areas adjacent to urban centers.
- The model does not allow for population growth/decline to occur simultaneously across cells in the same category.
 - The model cannot account for population redistribution within rural areas, a common rural phenomena in which people congregate in larger regional centers.
- Cells located nearer to the regional borders are subject to lower potentials, relative to cells located in the center of the region.
 - Potential border or "coastal" effect in which growth occurring near regional borders (or on the coast) is under-predicted.

Cell Potential Parameters

Parameter	Description	IIASA Value	Test Range
α	Weight of cell <i>i</i> 's population, higher values lead to more concentrated change.	0	0-2
λ	Weight of cell <i>j</i> 's population, higher values lead to more dispersed growth.	1	0-2
β	Distance weight, higher values lead to more concentrated change.	2	1-3
γ	Either 1 (population gain), or -1 (population loss). Allocates gain or loss with theoretical appropriateness.	1	1,-1

Results: Change in Prediction Error

Hypothetical Study Area

- Rural with border effects
- Rural, no border effects and no urban influence

Rural with urban influence

Distribution of Population and Potential when varying the *B* parameter.

Next Steps

- Parameterization of factors affecting potential calculation and allocation rule using hypothetical study area (allow tuning/calibrating model to data).
- Alternative methods for re-classifying cells as urban/rural.
- Allow aggregate growth rate (r) to vary within the urban/rural region as a function of density or distance.
- Add a third broad population category; "suburban".

Future Plans

- Developing a model that can produce plausible alternative spatial population scenarios given assumptions concerning future aggregate demographic change.
- Explore the link between spatial population scenarios and urban land cover.

Modifying the IIASA Methodology

Two changes were applied to the IIASA methodology:

- 1. Including the population of each cell *i* in the calculation of its own potential.
- 2. Allocating population loss using the *inverse* of cell potential.

Potentially:

- Increasing the concentration of population growth by increasing the relative potential of already highly populated cells.
 - Improving ability to capture rapid urban growth.
- Increasing the concentration of rural growth in areas adjacent to urban areas.
- Increasing the concentration of population loss in those cells with the lowest potential (usually the most remote cells).
- Allowing for simultaneous growth/decline to take place within rural regions by concentrating growth in cells with the highest potential, and decline in those with the lowest.
- Decreasing the impact of the border effect, particularly in areas of concentrated coastal development.

Methodological Changes: Findings and Implications

- The adjustments did produce improvements in the right direction, however not at the level necessary to eliminate the issues that have been identified.
- Urban population allocation is more concentrated.
- Rural population growth is more concentrated in areas adjacent to urban centers, while population loss is more concentrated in remote areas.
- The model projected both growth and decline within the rural region over the entire period.
- However, population growth in rural cells was still too small to allow any of them to reach the density threshold necessary for reclassification.
- The initial urban/rural classification (and rule for re-classification over time) appears to remain the largest factor affecting population change.

Cell Potential: Examples

А

R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	U	υ	U	R	R	R	R	R
R	R	R	R	R	R	R	R	U	U	R	R	R	R	R
R	R	R	R	R	R	R	R	J	U	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	С	U	U	R	R	R	R
U	R	R	R	R	R	R	R	υ	U	U	R	R	R	R
U	R	R	R	R	R	R	R	R	U	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	U	U	U	R	R	R	R	R
R	R	R	R	R	R	R	R	U	U	R	R	R	R	R
R	R	R	R	R	R	R	R	U	U	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
R	R	R	R	R	R	R	R	U	U	U	R	R	R	R
U	R	R	R	R	R	R	R	U	U	U	R	R	R	R
U	R	R	R	R	R	R	R	R	U	R	R	R	R	R
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

R Rural Cell

Spatial/Theoretical Implications

- The classification of a cell as rural/urban has a large impact on the calculation of potential for all cells within the urban window.
 - Inclusion in window
 - Size of population
- The classification of a cell as rural/urban has a no impact on the calculation of potential for cell *i*.
- Possible border/coastal effects.
 - The interior urban area (B) has a larger rural window than the border urban area (C).
- > **Proximity** to population as an indicator of future growth/decline.
- Suggests that future urban development will take place almost exclusively in areas that are either currently urban, or are adjacent to existing urban areas.

В

Results: Assuming constant r = 5%

Cell	Pop(0)	Pop(50)	Δ Рор	% Δ Pop	Δ %Pop
Α	13	10,287	10,274	79032%	0.88%
В	53	15,762	15,709	29640%	1.32%
С	187	22,018	21,831	11674%	1.73%
D	564	30,395	29,831	5289%	2.09%
E	1,455	41,839	40,384	2776%	2.19%
F	3,205	56,805	53,600	1672%	1.75%
G	6,027	74,711	68,684	1140%	0.49%
н	9,680	93,433	83,753	865%	-1.53%
I I	13,273	109,410	96,137	724%	-3.73%
J	15,543	118,709	103,166	664%	-5.19%
К	15,543	118,709	103,166	664%	-5.19%
L	13,273	109,410	96,137	724%	-3.73%
М	9,680	93,433	83,753	865%	-1.53%
N	6,027	74,711	68,684	1140%	0.49%
0	3,205	56,805	53,600	1672%	1.75%
Р	1,455	41,839	40,384	2776%	2.19%
Q	564	30,395	29,831	5289%	2.09%
R	187	22,018	21,831	11674%	1.73%
S	53	15,762	15,709	29640%	1.32%
Т	13	10,287	10,274	79032%	0.88%

FGHIJKLMNOPQ

S T

R

Notes

2% 0%

A B C

D

F

The trends are the same as those we saw previously, just exaggerated due to the larger rate of growth.

Results: Assuming constant r = -5%

Cell	Pop(0)	Pop(50)	∆ Рор	% Δ Pop	Δ %Pop
Α	13	0	-13	-100%	-0.01%
В	53	0	-53	-100%	-0.05%
С	187	0	-187	-100%	-0.19%
D	564	0	-564	-100%	-0.56%
E	1,455	0	-1,455	-100%	-1.46%
F	3,205	0	-3,205	-100%	-3.21%
G	6,027	0	-6,027	-100%	-6.03%
н	9,680	494	-9,186	-95%	-3.26%
I I	13,273	1,363	-11,910	-90%	4.44%
J	15,543	1,990	-13,553	-87%	10.32%
К	15,543	1,990	-13,553	-87%	10.32%
L	13,273	1,363	-11,910	-90%	4.44%
М	9,680	494	-9,186	-95%	-3.26%
Ν	6,027	0	-6,027	-100%	-6.03%
0	3,205	0	-3,205	-100%	-3.21%
Ρ	1,455	0	-1,455	-100%	-1.46%
Q	564	0	-564	-100%	-0.56%
R	187	0	-187	-100%	-0.19%
S	53	0	-53	-100%	-0.05%
Т	13	0	-13	-100%	-0.01%

G H I J K L M N O P Q

R S T

Notes

5%

А

DEF

C

- > The lightly populated exterior cells quickly empty out.
- Population becomes concentrated in the interior cells.
- Potential remains greater in the interior cells, so these cells suffer more absolute population loss at each time step.