A Prognostic Methane Biogeochemical Model in CLM

W.J. Riley

Collaborators: Z. Subin, M. Torn, L. Meng, N. Mahowald, P. Hess, D. Lawrence

Boreal/Arctic-Climate Feedback

- One of the DOE IMPACTS projects
 - <u>http://esd.lbl.gov/research/projects/abrupt_climate_change/impacts</u>
- Potential future changes from:
 - Melting permafrost and thermokarst lakes in the Arctic
 - Changing wetland conditions from changing precipitation, temperature, and nutrients in the Tropics
 - Atmospheric feedbacks

CH₄ BGC Model: Outline

- Inundated fraction (F_i)
- CH₄ BGC processes:
 - Production, oxidation, ebullition, aerenchyma, and diffusion
 - Characterization, interactions, sensitivity
- Comparison to observations
- Regional and global fluxes

Inundated Fraction (F_i)

- Previous studies used static maps for F_i
 - Matthews and Fung (1996)
 - IGBP soils maps (Wania 2010)
- We applied a recent multi-satellite reconstruction (Prigent et al., 2007)
 - Passive microwave emissivities, ERS scatterometer, AVHRR reflectances
 - Inverted for F_i with CLM's FSAT parameterization
- Work by S. Swensen (NCAR) to develop mechanistic representation in CLM

Current CLM FSAT Prediction

- Globally integrated, current CLM FSAT over-estimates saturated area by more than a factor of 3
- Spatial heterogeneity and temporal variability poorly represented

CLM-CH₄ Biogeochemistry

Modeling CH₄ Biogeochemistry

- Relationship applied in global, regional, and site-level models
- In CLM, solved vertically at each time step
- Competition between processes determines net surface flux

CH₄ Production

- Several interacting populations in anaerobic zone
 - Anaerobic fermentation, methanogens
 - Modeled production tied to predicted soil respiration
- Anaerobic CH₄ / CO₂ ratio varies over several orders of magnitude (Segers, 1998)
 - pH, other electron acceptors (NO₃⁻, Mn₄⁺, Fe₃⁺, SO₄⁻²) reduced before methane is produced
 - Adopt Zhuang et al. (2004), or analogous, approach, or
 - Integrate a global database of wetland type
- Depth dependence, seasonal inundation
- Q₁₀ based on literature (values vary widely)

Global Lakes and Wetlands Database GLWD

Lehner & Doll (2004)

CH₄ Oxidation

- Sink of CH₄ and O₂ and source of CO₂
- Methanotroph CH₄ oxidation rate:

$$R_{oxic} = R_{oxid, \max} \left[\frac{C_{CH_4}}{K_{CH_4} + C_{CH_4}} \right] \left[\frac{C_{O_2}}{K_{O_2} + C_{O_2}} \right] Q_{10}$$

- Model includes other processes that consume O₂
 - Heterotrophic and autotrophic respiration
 - Autotrophic respiration requires much more O₂ than required by methanotrophs to remove all CH₄

Aerenchyma

- All wetland plants need to bring O₂ to roots
 - CH₄ and O₂ can diffuse along this pathway
 - Previous models imposed constant fraction of oxidation associated with aerenchyma
- Radial and axial O₂ leakage supplies heterotrophic and autotrophic respiration and methanotrophs

Comparison with CH₄ Observations

13

Comparison with CH₄ Observations

- Net CH₄ Fluxes:
 - Global: 165 Tg CH₄ y⁻¹

- >45N: 32 Tg CH₄ y⁻¹

Sensitivity

• $K_m(CH_4)$, $K_m(O_2)$, Aerenchyma area

- All other parameters held constant

Future Work

- Role of pH and alternative electron acceptors on CH₄ production
- Complete testing against extant CH₄ datasets
- Integration with new soil C predictions/model
- Landscape thermokarst model and CH₄ BGC
- Atmospheric coupling (regional and global) and feedback experiments
- Integration with dynamic vegetation model

Model Discussion

- Potential improvements in current CLM-CN that would be helpful to CH₄ BGC modeling
 - No saturated, or seasonally inundated, C cycle
 - No separate C cycle by PFT
 - No wetland plants
 - No explicit depth dependence
 - No root exudation
 - Poor representation of groundwater
 - No surface water storage

Motivation

- CH₄ has second-largest RF of long-lived GHG's
- Ice cores indicate CH₄ varied from ~400 (glacial) to 700 (interglacial) ppb
- Concentrations and emissions are increasing

Atmospheric CH₄ Budget

- Many inversion and bottom-up budgets have been developed
- Overall, ~500-600 TgCH₄ y⁻¹ are emitted – Anthropogenic: 315-350 TgCH₄ y⁻¹
 - Global wetlands: 130-194 or 100-231 TgCH₄ y⁻¹
 - Northern wetlands: 31-110 TgCH₄ y⁻¹
- Terrestrial fluxes are uncertain

Ebullition (Bubbling)

- Allow for bubble formation at relatively low saturation
- Bubbles rise to either atmosphere or first unsaturated layer (where it can be oxidized quickly)
- Important competition for oxidation

Subsurface Transport

- Effective diffusivity
 - Depends on water content, temperature, soil properties, and species (Moldrup et al. 2003; Millington-Quirk)
- Equilibrium assumed at WT interface
- Boundary conditions:
 - Surface conductance for top BC
 - Zero gradient for bottom BC
- Lakes
 - CH₄ and O₂ move through water based on thermal eddy diffusion and convection
 - Most atmospheric exchange via ebullition