CLM3.5 with Three Biogeochemical Models Under Control and Drought Scenarios in an East-Central Amazon Forest

Koichi Sakaguchi (ksa@email.arizona.edu), Xubin Zeng, Bradley J. Christoffersen, University of Arizona

> Manaus, Brazil http://en.wikipedia.org/wiki/Amazon_Rainforest

Acknowledgments:

LBA-ECO, LBA-MIP, BrasilFlux, and Univ. of Arizona Saleska Lab

Motivation

Expected increase in frequency and intensity of drought

Question: How realistic are the simulated **vegetation & drought sensitivity** in global land / biogeochemical / dynamic vegetation models?

Method : CLM3.5 and biogeochemical models

Three biogeochemical (BGC) models coupled independently to a same land model

effectively find out strengths & weaknesses of the land (CLM) and BGC model structures & formulations

Model name	CASA'	CN	DGVM
Base model	CASA Pottere et al., 1993; Friedlingstein et al., 1999	BIOME-BGC Thornton et al., 2002; Thronton and Rosenbloom, 2005	LPJ and IBIS Sitch et al., 2003; Foley et al., 1996
C cycle	yes	yes	yes
N cycle	no	yes	no
Plant dynamics (change in PFT cover)	no	no	yes
number of C pools	3 plant tissues, 5 litter pools, 2 microbial communites, 2 SOM	6 plant tissues, 4 litter pools, 4 SOM. Same number of N pools	4 plant tissus, 2 litter pools, 2 SOM
R _a	50% of GPP	R_m : f(T,N) for leaf, live stem, coarse & fine roots, f(T) = Q10 R_g : 30% of new growth	R_m : f(T,C) for leaf, live stem, & root, f(T) = Lloyd & Taylor R_g : 25% of (GPP- R_m)
R _h	$f(C,T,\theta), f(T) = Q10$	$f(C,N,T,\Psi), f(T) =$ Lloyd & Taylor	$f(C,T,\theta), f(T) = Lloyd \&$ Taylor
Plant carbon allocation	Dynamic at land model time step, resource availability	Dynamic at land model time step, resource availability + allometric relationship	Dynamic at yearly time step, allometric relationship
Vertical distribution of root fraction	Exponential (same as CLM3.5)	Linear	Exponential (same as CLM3.5)
Leaf phenology	Single phenology scheme with GDD summation, Based on Dickinson et al., 1998	Four types: evergreen, seasonal-deciduos, warm stress-deciduous, cold stress-deciduous. Based on White et al., 1998	Four types: evergreen, seasonal-deciduous, stress-deciduous, grass. Based on IBIS and LPJ models

Method: Study Site & Data

Biometric measurements, Flux tower observation, and Artificial drought experiment: **Tapajos National Forest**

2007;2008, Nepstad et al. 2002;2007, Brando et al. 2008, Malhi et al., 2009, and others Tropical Rainfall Measuring Mission (TRMM) average monthly precipitation: 1998 - 2006 10° Venezuela Guvana Surinam French Colombia vana 5° 0 Ecuado 5°-Brasil RJA 10° FNS JAV 15° Bolivia 300 600 **Kilemeters** 20° mm month PEG 🛓 250 225 200 175 150 125 100 60 75 70° 65°

LBA: Saleska et al., 2003, Keller et al., 2004, Rice et al., 2004, Hutrya et al.,

Results: Natural (non-drought) Conditions

Results : Soil Moisture

Inter-model difference is small (except for CN)

- Larger bias in soil water content and variability at greater depth
- Model simulates water stress in severe dry season, but similar stress is not observed in eddy flux measurement.

Results : Vegetation Structure & Phenology

•Live Above Ground Biomass: Overestimated by all the models (Randerson et al., 2009)

•Seasonality in leaf fall is not well simulated : but **important** to photosynthesis, respiration, and LE in tropical forests with dry seasons

Results: Surface Fluxes (Monthly Mean)

7

Results: Water & Light Use Efficiency

Summary 1: Natural (non-drought) conditions

In the East-Central Amazon,

- 1. The base model CLM3.5 tends to overestimate soil moisture, GPP, and transpiration. It leads to higher annual productivity and biomass in BGC model simulations.
- 2. The simulated seasonality of the energy and carbon fluxes does not agree with observation, mainly due to the water stress during dry season (only in the simulations).
- 3. Large inter-model differences in Reco. CN produces the most reasonable result, but does not reproduce the observed seasonality.

Results: Drought Scenario

Drought in Wet Season: Soil Moisture

- Wet bias in wet season, similar ~ drier in dry season
- Variability is higher than observation

Drought in Wet Season: Vegetation Response

11

•ANPP change: Large inter-model differences, ~ capture the observed yearly change.

•LAGB change: Insensitive to drought stress (wetter soil & higher GPP & mortality formulation)

Additional Scenarios: Drought in Dry Season

(Simulations only)

Less severe than wet season drought, except for DGVM

Additional Scenarios: Drought All Year

(Simulations only)

• Relative decline of LAGB in CASA' and CN are still smaller than observation of wetseason drought experiment.

Tropical forest collapsed after 3 years in DGVM

Summary 2: Drought Scenario

- 1. Simulated above ground biomass is not as sensitive to drought stress as observation.
- 2. All-year drought collapsed tropical trees in DGVM in the fourth year.

Overall, CLM 3.5 and the three BGC models needs further improvements in the relationships among:

soil water content - water stress/max GPP - mortality

for realistic simulations of the future Amazon forest.

Does CLM4.0 need modifications or additional parameterizations (e.g., Lee et al., 2005, Baker et al., 2008) ?