Interactions of land use/land cover change with rising CO₂ and anthropogenic nitrogen deposition

Peter Thornton¹, Forrest Hoffman¹, and George Hurtt²

> ¹ Oak Ridge National Laboratory ² University of New Hampshire

Acknowledgements

- Peter Lawrence (NCAR) land cover data processing
- Jean-Francois Lamarque (NCAR) N deposition dataset

Sponsorship

- DOE Office of Science
- NSF
- NASA

Background

 IPCC AR4 carbon-climate simulations included LULCC as a prescribed forcing flux

- Similar to treatment of fossil fuel emissions

- That approach generates inconsistencies between predicted state of land ecosystems and assumed forcing.
- Data are now available to drive a more mechanistic representation of LULCC

Motivation

- Previous global-scale modeling suggests significant interactions between rising CO₂ and anthropogenic N deposition
 - Thornton et al. 2007, Sokolov et al. 2008, Zaehle et al. 2009, Shevliakova et al. 2009.
- Site-level modeling and measurements indicated strong interaction between disturbance history and C-N interactions

- Thornton et al. 2002, Davidson and Janssens 2006

• C-N-LULCC interactions might therefore have significant impact on estimation of allowable emissions for AR5 carbon-climate analyses.

Summary of simulations

	Dynamic components		
Simulation	CO ₂	N _{dep}	LU/LCC
Control			
С	Х		
N		X	
D			Х
CN	X	X	
CD	X		Х
ND		X	Х
CND	X	X	Х

Table 1. Historical global simulations (1850-2004). Used to evaluate independent and interaction effects of: increasing CO2 (C), increasing anthropogenic nitrogen deposition (N), and landcover change (D).

Effects of rotation harvest are included in the land cover change term.

Calculating interactions...

	Effect		Description
Analysis	Forcing	Interaction	
dC	Х		C - Control
dN	Х		N - Control
dL	Х		L - Control
dCN	Х		CN - Control
dCL	Х		CL - Control
dNL	Х		NL - Control
dCNL	Х		CNL - Control
d[CN]		Х	dCN - (dC + dN)
d[CL]		Х	dCL - (dC + dL)
d[NL]		X	dNL - (dN + dL)
d[CNL]		X	dCNL - (dC + dN + dL)

Table 2. List offorcings andinteraction effectsinvestigated todate. Descriptionshows thedifferencing ofexperiments fromTable 1 used toisolate the forcingor interaction terms.

Quick aside: Amazon LAI

Spun-up to steady state with N deposition and CO₂ circa 2000.

~+30%

Spun-up to steady state with N deposition and CO_2 circa 1850.

Quick aside: Amazon LAI

1850 spinup followed by CO_2 , N dep, and landuse transients.

Spun-up to steady state with N deposition and CO_2 circa 1850.

Influence of rising CO₂ on NEE

Influence of rising CO₂ on total C and N availability

(CO₂ – control)

Influence of anthropogenic N deposition on NEE and total C

(Ndep – control)

Influence of LULCC on NEE and total C

(LULCC - control)

Shevliakova 2009 (LM3V model result)

LULCC effect on NEP: temperate forest regrowth

Single and combined effects on NEE

Single and combined effects on total land C

Interaction effects for total land C

Interaction as % of total C+N+LULCC effect

Conclusions

- Strong interaction effects argue for integration of LULCC drivers in ESM for simulations based on future scenarios
 - Currently offline forcing from integrated assessment models
- Two projects underway to make this coupling in CCSM (with GCAM and IMAGE models).