

A Diagnostic Tool for Chemistry-Climate Models

Andrew Gettelman (NCAR)

CCMVal Diagnostics Development Team: Veronika Eyring (DLR), Greg Bodeker (NIWA), Irene Cionni (NIWA/DLR), Chris Fischer (NCAR), Mike Neish (Univ. Toronto), Hamish Struthers (NIWA), Ted Shepherd (Univ. Toronto), Hisako Shiona (NIWA) & Charlotte Pascoe (BADC)

Chemistry Diagnostics

- AMWG has a diagnostic package for atmosphere dynamics/physics
- Recently, diagnostics have been developed for Chemistry Climate Models:
 - CCMVal project in support of WMO2010 Ozone assessment.
- Tool runs with WACCM and CAM-CHEM, can be used generally (AR5 models)
- Examples and plans follow

Motivation and Goals

- Facilitate the model evaluation, e.g.
 - Allow quick looks at standard diagnostic plots & output diagnostic variables
 - Produce climatology files from CCMVal-2 CF-compliant model output
 CF = Climate and Forecast meta-data
- Include the diagnostics of the previous round of CCMVal evaluation
- Expandable and extensible
 - Useful by multiple model groups & those analyzing models
 - SPARC CCMVal report can extend tool (i.e. provide diagnostics once report is finalized)

Principles and Properties

Principles

- Open Source Code
 - Python Script
 - NCAR Command Language (NCL) Calls (netCDF & Graphics)
- Portable across Platforms & Operating systems
 - UNIX/Linux/Windows/Mac
- Extensible and flexible
 - Run a lot of standard diagnostics. Or run only a few

Properties

- Read CF- compliant netCDF input
 - Or: read non-CF compliant (e.g.: CAM History) and convert
 - Readers for CAM already built
- Generates graphics and netCDF output (for other processing)
- Compare model(s) [one→many] to observations
- Will also generate web pages (eventually)

Sample output: Zonal Mean Ozone

Compare multiple models (or runs from 1 model)

JJA

Ozone Trends (with mean)

Ozone trends in the Mid-latitude UTLS: multiple models and multi model mean

Tropical Ozone Annual Cycle

Comparisons with observations (Ozone)

CCMVal-1 v. CCMVal-2

CCMVal-1 H₂O

CCMVal-2 H₂O

Eyring & Cionni

Zonal Wind

ANN

Cold Point Tropopause Temperature

Derived Fields: Tropopause Temperature

DJF

Zonal Mean Tropopause Temperature

Multiple Observations: Derived variable

Tropopause Altitude Trends (REF-B1)

Trends from a derived variable

ANN

Notes

- Requires only NCL & Python installed.
 - Open Source
 - Python installed on many platforms
 - NCL 'easy' to install
 - No separate netCDF libraries
- Will run on Linux/Unix/Mac & Windows
 - Pre-compiled binaries available for most systems
 - Runs with X windows emulator under windows
- Flexible and built with text namelists
 - Average user will not need to modify python, not much NCL
 - Many users can just copy and paste, or use standard sets
 - Easy to hack to do what you want!

Next Steps

- Finish Technical Note for Geosci. Model Dev.
- Modifications to work with large data sets (multiple 1-2 GB files)
- Extend output sets to provide web pages
- Add in more observations

NOTES:

- CAM & ChemWG could be a prime user
- Already runs with CAM & WACCM
- Have some resources at NCAR & NIWA (NZ) to help over next 18 months.

