Halogen Chemistry in CAM-CHEM & CCMVal

D. Kinnison, A. Saiz-Lopez, J.F. Lamarque, S. Tilmes, plus... A. Gettelman, J. Orlando, S. Schauffler, E. Atlas, and R. Garcia

February 12 CCSM CCWG Boulder, Co dkin@ucar.edu 303-497-1469

- VSL Halogens
- SPaRC CCMVal Chemistry-Climate Model Evaluation

VSL Halogen Scientific Questions

- Can observation of VSL halogens help constrain transport pathways into the tropical UTLS in a 3D CCM?
- What impact does VSL substances have on model derived Ozone trends?
- What is the Role that VSL organic bromine and iodine species have on the ozone budget in the tropical lower troposphere?
- What is the impact of VSL halogens on CH₄ lifetimes through amplification of OH
- What are the climatic impacts of VSL halogens?

Subset of the VSL Halogenated Substances currently being added the CAM-CHEM mechanism (~20 SG)

Source Gas	Formula	Local Lifetime (days)	Main Loss processes	WAS
Bromochloromethane	CH ₂ BrCl	150	ОН	\checkmark
Trichloromethane (chloroform)	CHCl₃	150	OH	\checkmark
Methylene chloride	CH ₂ Cl ₂	140	OH	\checkmark
Dibromomethane	CH ₂ Br ₂	120	ОН	\checkmark
Bromodichloromethane	CHBrCl ₂	78	OH, hv	\checkmark
Dibromochloromethane	CHBr ₂ CI	69	hv, OH	\checkmark
Tribromomethane (bromoform)	CHBr ₃	26	hv	\checkmark
Methyl iodide	CH ₃ I	7	hv	\checkmark
Trifluoroiodomethane	CF₃I	4	hv	-

- Convection lofting VSLS into the TTL.
- Influencing the total inorganic bromine abundance.
- Transported to ExTL?

TC4, Whole Air Sampler, Schauffler, Atlas, et al., AGU, 2007

Good Profile Data!

Modeling the Troposphere with VSLS

- Need a model with representation of Tropospheric
 O₃ chemistry (e.g., NMHCs; Emissions, etc...).
- Need a model that includes a VSL organic and inorganic mechanism.
 - Organic species: Adds ~18
 - Inorganic species: Adds ~20
 - Photolysis Rxns: Adds ~23
 - Sulfate Het. Rxns: Adds ~5
 - Sea Salt Aer. Rxns: Adds ~9
- Need Emissions Observations suggest that the biogenic production seems to come from seaweed, phytoplankton, algae etcs... [we use Chlorophyll-A obs from SeaWIFS]

Tropospheric Halogen Chemistry

Tropospheric Halogen Chemistry

Aircraft Data for VSL Organics

ARCTAS (Apr–Jun 08) START08 (Apr–Jun08 HIPPO1 (Jan 09) PEM_Tropics_A (Aug–Oct 96) PEM_Tropics_B (Mar–Apr 99)

Courtesy of Simone Tilmes

CHBr₃ (Bromoform)

IO and BrO at Cape Verde

Read et al., Nature, 2008
Cape Verde [16.85N, 24.87W]
DOAS measurements.

IO and BrO at Cape Verde (Diurnal)

Ozone *** Surface *** May

Ozone at Cape Verde (16.9° N, 24° W)

Ozone at Cape Verde (16.9° N, 24° W)

• Seasonal cycle is well represented.

Ozone Distribution

- Model without halogen is OK (in for the mean).
- Observations have a broader distribution (more variablity)?

NOx Distribution

- Model is too high
- Emissions need to be improved?
- Model resolution?

Also have CO distributions

NOx Emissions

NO (vmr) – Baseline Simulation

Outline

VSL Halogens

SPaRC CCMVal Chemistry-Climate Model Evaluation

- Chemistry evaluation [Chapter 6].
- Results will be published in 2010.

Process	Diagnostic	Variables	Observations	References
1. Photolysis Rates	Offline profiles of key O ₃ controlling photolysis rates.	Photolysis rates	Benchmark reference model (Bian and Prather, 2002).	Prather and Remsberg, [1993]
2. Photochemical mechanisms and short timescale chemical processes	Offline box model profile comparisons of fast chemistry constituents (~ ≤ one week)	Full chemical constituents [Reservoir and radical species]	HO _x : balloon, shuttle, aircraft NO _x : satellite, shuttle, balloon, aircraft ClO _x : satellite, shuttle, balloon, aircraft; BrO _x : aircraft	Gao <i>et al.</i> , [2001] Salawitch <i>et al.,</i> [1994a].
	Partitioning of chemical species within the families	Species from families (ClO _x , NO _x , HO _x , BrO _x , Cl _y , NO _y , Br _y) temperature, PV from wind fields	Save as above.	Pierson <i>et al.</i> , [2000]; Park <i>et al.</i> , [1999].
3. Long timescale chemical processes	Comparison of abundance of reservoirs and radical precursors	Instantaneous output of all chemical constituents and temperature (one per month)	Satellite measurements of reservoirs and precursors.	Millard <i>et al.</i> , [2002], Salawitch <i>et al.,</i> [2002], Sen <i>et al.,</i> [1998].
	Tracer-tracer relations	O3, NOy, CH4, H2O, N2O		Chang et al., [1996], Fahey et al., [1996], Müller et al., [1996]
4. Polar processes in winter / spring	Chemical Ozone Loss versus PSC activity	O ₃ , Sulfate SAD, N ₂ O, T, U, V, PV (derive Eqlat / θ)	Satellite observations of N ₂ O and O ₃ ; meteorological data products.	Rex <i>et al.,</i> [2004], Tilmes <i>et al.,</i> [2004]
	Denitrification/ Dehydration	H ₂ O, HNO ₃ , T, U, V, PV (derive Eqlat / θ)	Aura MLS observation of H ₂ O and HNO ₃ .	Manney <i>et al.</i> [2007], Santee <i>et al.</i> [2007], Lambert <i>et al.</i> [2007].
	Chlorine Activation	HCl, T, U, V, PV (derive Eqlat / θ)	Aura MLS observation of HCl.	Manney <i>et al.</i> [2007], Froidevaux <i>et al.</i> [2008].
	NAT/ICE Surface Area Density	T, U, V, PV (derive Eqlat / θ)	No Observation; model/model comparison.	

Lead Authors Martyn Chipperfield Doug Kinnison

Co-Authors Slimane Bekki Huisheng Bian Christoph Bruehl Tim Canty Sandip Dhomse Lucien Froidevaux Rolf Müller Michael Prather Ross Salawitch Michelle Santee Wenshou Tian Simone Tilmes

Photochemical Steady State Approach

Contend:

If all models are using "JPL 2006" kinetics, which defines their **chemical mechanism**, then all models should compute the same values of O(³P), OH, NO, CIO, BrO, etc for the same specification of long-lived radical precursors & physical properties

Salawitch, Canty, Kinnison, and Chipperfield.

Grading the Models

 We then use σ_{PSS} and σ_{CCM} in the computation of g, which is shown for each panel of each plot (this took a fair amount of effort to setup and formulate ⁽ⁱ⁾):

$$g = \frac{1}{N} \sum_{0}^{N} 1 - \left(\frac{abs(Mixing Ratio_{CCM} - Mixing Ratio_{PSS})}{3 \cdot (\sigma_{CCM} + \sigma_{PSS})} \right)$$

where we have:

a) floored g at 0 for each altitude (i.e., g is not allowed to go negative)

b) evaluated g between: the tropopause (which we determine) and 1 hPa for all species except BrO/Br_y, the tropopause (which we determine) and 5 hPa for all BrO/Br_y (there seem to be issues with model representation of BrO at high altitude, where it simply does not matter, for BrO we focus on only the altitudes that matter ③

c) evaluated g for JPL 2002 kinetics and JPL 2006 kinetics for O(¹D) and BrO/Br_y, and propagate the higher value of g (many CCMs clearly did not add the O+BrONO2 reaction, new for JPL 2006, into their chemical mechanism; since we can account for this nuance, we will show the best value of g, but will indicate on the metric summary which kinetic set was used)

(again, this builds on the work of Waugh & Eyring, ACP, 2008)

- σ_{obs} = is the uncertainly in the observations
- σ_{ccm} = average value of the std dev about the zonal mean

Salawitch, Canty, Kinnison, and Chipperfield.

CAM 3.5

WACCM

CAM 3.5

WACCM

As good as it gets ! If we are actually solving the same set of chemical reactions, as we aspire, then all comparisons should look nearly this good © <u>We Values of g are not unity</u>, however, because the multi-decadal log plots obscure small differences.....

PSS Grading Table

Correlation low vs high SAD

Summary of Chemistry Evaluation

- Overall, CAM-CHEM graded out high in the Photocomp and Long-lived sections (not shown).
- Comparison in the fast chemistry section was also generally good; with the exceptions that the NOx/NO_Y and Clx / Cl_Y were graded lower!?
- The ozone hole was not as deep as observations; which is probably due to a warm bias. More work is needed here (i.e., validate the polar chemistry).

The End!