PCWG Update David Bailey and Marika Holland, NCAR Cecilia Bitz, UW

- Community Ice CodE (CICE) 4.0 Base Code
 - Delta-Eddington Radiative Transfer in sea ice and snow. (Briegleb and Light)
- Melt Pond Parameterization. (Bailey and Holland)
 - Arbitrary Number of Tracers (for example age, melt ponds, FY area, aerosols).
- Aerosol cycling and deposition on sea ice / snow.

New Albedo (delta-Eddington) Formulation

- Snow and ice albedos now a function of zenith angle and optical properties of snow, sea ice, and melt ponds.
- Tunable non-melting and melting snow grain radius -> target albedos.
- Accounts for the effect of impurities (aerosols, algae, etc) in the snow and ice.
- Simple linear snow-aging at this stage.

Aerosol cycling implementation

Snow SSL (4cm)

Snow Interior

Ice SSL (5cm)

Ice Interior

- Four aerosol reservoirs in the vertical
- Aerosol cycling due to ice transport, vertical melt/snow-ice formation
- Melt water scavenging
- Six aerosols 2 black carbon (hydrophilic/phobic), 4 dust
- Currently affects radiative transfer
- Receiving aerosol deposition from CAM V
- Future work will link to ocean iron deposition

CAM V vs CAM IV Mean State

5

4.5

4

3.5

3

2.5

2

1.5

1

0.75

0.5

0.25

0.1 0.05

grid cell mean ice thickness

m

September Ice Extent

20th Century Sept Ice Extent (CCSM4)

Trends in late 20th century Sept ice extent loss from the ensemble members bracket the observed trend

20th Century JAS mean (CAM V).

Climate Sensitivity: What's SOM got to do with it?

ANN

NCEP

eul64x128 d49ttne3som (yrs 20-39)

Summary

- New CICE physics and SOM.
- Aerosols have a limited impact in the central Arctic, but more important near the margins.
- CAM V sea ice: room for improvement.
- 20th century sea ice simulations bracket obs.
- Climate sensitivity in CCSM4 about 0.5-0.7 higher than CCSM3 (SOM formulation, model component physics changes).
- New SOM reproduces coupled model climate.

And Beyond CCSM4?

- Ice model to-do list (Feb, 2006):
 - -improved radiation scheme (DONE)
 - dynamic stability improvements (DONE)
 - -inclusion of biogeochemistry (In Progress)
 - -sea ice "hydrology" including melt ponds, brine pockets and drainage, percolation and snow-ice formation (Some progress)
 - -snow metamorphosis; snow aging (June, 2007; ??)
 - -blowing snow parameterization (??)
- New applications that we are/may contribute to
 - -regional modeling (POP-ROMS/CAM-WRF) -weather-climate (WRF) scale interactions
 - -high-resolution coupled integrations
 - Do these new areas have specific model development needs? _ -How do we entrain the necessary communities?
- More generally What is needed to accelerate model developments? What is needed to identify new areas?