The Physical and Aerodynamic Roughness of Sea Ice

Ed Andreas

NorthWest Research Associates Lebanon, New Hampshire

Parameterize Turbulent Surface Flux

Momentum Flux:

$$\tau \equiv -\rho \overline{\mathbf{u}\mathbf{w}} = \rho \mathbf{u}_{\star}^2 = \rho \mathbf{C}_{\mathsf{Dr}} \mathbf{S}_{\mathsf{r}}^2$$

Sensible Heat Flux:

$$H_{s} \equiv \rho c_{p} \overline{wt} = \rho c_{p} C_{Hr} S_{r} (T_{s} - T_{r})$$

Latent Heat Flux:

$$H_{L} \equiv \rho L_{v} \overline{wq} = \rho L_{v} C_{Er} S_{r} (Q_{s} - Q_{r})$$

Drag Coefficient

$$\mathbf{C}_{\mathsf{Dr}} = \frac{\mathsf{k}^2}{\left[\mathsf{ln}(\mathsf{r}/\mathsf{z}_0) - \psi_{\mathsf{m}}(\mathsf{r}/\mathsf{L})\right]^2}$$

where k is the von Kármán constant, r is an arbitrary reference height, z_0 is the roughness length for momentum, L is the Obukhov length, and ψ_m is a stability correction

Compare Flux Algorithms

Component	SHEBA	CICE
Z ₀	Depends on u _*	5.0×10 ⁻⁴ m
	and C _i	
Z _T , Z _Q	Andreas (1987)	5.0×10 ⁻⁴ m
In low wind	Windless transfer, all fluxes	Windless transfer,
		only sensible heat,
		only stable
Stability	Grachev et al.	Holtslag & De Bruin
	(2007);	(1988);
	Paulson (1970)	Paulson (1970)

SHEBA Flux-PAM Site Atlanta

In the Arctic Ocean (Winter Only)

Main Tower on Ice Station Weddell

In the Weddell Sea (Winter)

Quantify Physical Roughness

A roughness parameter related to the surface variance (from Banke et al. 1980)

$$\xi^2 = \int_{\kappa_0}^{\infty} \Phi(\kappa) d\kappa$$

where κ is the wavenumber, and $\Phi(\kappa)$ is the wavenumber spectrum of the surface elevation κ_0 is a cutoff wavenumber of 0.5 rad m⁻¹ (equivalent to a maximum wavelength of 12.6 m)

Summary

- Have presumed that a bulk flux algorithm tuned for multiple SHEBA sites would be good over any sea ice surface
- The SHEBA algorithm's prediction for z₀ is too small, however, to simulate momentum transfer over the Weddell Sea
- Seem to need additional parameters to model a "local" value of z₀ over snow-covered sea ice