

On the Late Saalian glaciation (160 - 140 ka): a climate modeling study

Florence Colleoni*

Centro Euro-Mediterraneao per i Cambiamenti Climatici (Bologna, Italy)

February 17, 2010

Work done at:

Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS, UJF, Grenoble (France)

Department of Geology and Geochemistry, Stockhom University (Sweden)

flocolleoni@gmail.com

The Quaternary Environment of the Eurasian North Project (1999 - 2003)

QUEEN

The Late Saalian astronomical forcing

- I40 ka: highest eccentricity Perihelion: December 6*
- I 50 ka: lowest eccentricity Perihelion: June 28
- I60 ka: largest obliquity Perihelion January 7

(°)

Perihelion = shortest distance to the sun

Late Saalian: larger eccentricity than during the LGM

*LGM: Perihelion January 17

After Berger and Loutre (1991)

How could the ice sheet survive the insolation peak at ≈ 150 ka?

Reconstruction of the boundary conditions:

- Global Late Saalian topography
- Dust deposition distribution
- Vegetation cover in equilibrium
- Sea surface temperatures

simulating 160 ka, 150 ka and 140 ka climate

Numerical models and boundary conditions

Orbital parameters and Greenhouse gas

BIOME4 (Kaplan et al. 2004) Equilibrium vegetation model

simulated vegetation cover

Initialised using: LMDZ4 climatology (~21 model yrs) forced with a LGM vegetation map (Crowley, 1995)

Iterative scheme until equilibrium

Planet simulator (Fraedrich et al., 2005) AGCM + oceanic mixed layer

simulated sea surface conditions

Horizontal resolution:T42 (128*64) Initialized using: LGM monthly SST from Paul & Schaefer-Net (2003)

Return SST through heat fluxes calculation

Length of simulation: 50 model years

global atmospheric simulations

LMDZ4 (Hourdin et al., 2006)

Horizontal resolution: 96 x 72 Vertical resolution: 19 layers Zoom over Eurasia: (grid space ~ 100 km) Length of simulations: 21-year snap-shots

Eurasian ice sheet: 3000 m high reconstruction using GRISLI ice sheet model (Peyaud, 2006; Ritz et al. 1991)

Laurentide and Antarctica ice sheets: LGM ICE-5G (Peltier, 2004)

problem for the global ESL: excess of mass

Proglacial lakes: after Mangerud et al. (2001)

- developed in the topographic basin in front of the ice sheet
- damming of the rivers network

Mediterranean

The Late Saalian dust distribution

Epica Dome C, East Antarctica (Delmonte et al., 2004)

Dust concentration: comparison with LGM:

- I 40 ka: 40% lower than LGM
- 150 ka: 80% lower than LGM
- 160 ka: 50% lower than LGM

In agreement with the Siberian loess stratigraphy (Chalchula, 2003)

160 ka

150 ka

Dust concentration g/m²/yr

Centro Euro-Mediterraneo per i Cambiamenti Climatici

100°W

Reference vegetation map used in all the Late Saalian reference simulations

Vegetation cover: using BIOME 4

- I 50 ka: tundra replaced by mixed forests
- I 40 ka: progression of barren soils: glacial maximum

Late Saalian sea surface conditions

- Equatorial / Tropical SST: good agreement with data
- High latitudes Atlantic SST: underestimate data
- Large SIC extent in NH high latitudes: ~ 40°N

- Asymmetry due to 140 ka SST large sea-ice cover: albedo feedback
- At 160 ka: similar to 150 ka (slightly warmer falls at 150 ka)

(Colleoni et al., sub.)

Sea ice cover of the Late Saalian period (160 - 140 ka)

Northern Hemisphere Sea-ice Cover:

- Largest extent: 140 ka
- Smallest extent: 150 ka more or less similar to present-day extent
- Intermediate extent: 160 ka almost similar to CLIMAP LGM reconstructions

The Late Saalian mean annual climatology (160 ka to 140 ka)

How could the ice sheet survive the insolation peak at \approx 150 ka?

warmer mean annual climate at 150 ka than before:

- More open sea surface conditions: larger moisture advection
- Larger forest extent: warmer regional climate

Larger ablation compensated for by a larger accumulation along the oceanic margins

