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Overall project goals

I Create scalable, parallel, adaptive full Stokes ice sheet
simulator equipped with deterministic and statistical inversion
capabilities

I Integrate as an alternative dynamics model with CISM

I Quantify uncertainties in predictions of ice sheet dynamics in
West Antarctica through assimilation of observational data
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Research challenges

I Scalable linear solvers for variable-coefficient Stokes

I Scalable nonlinear solvers for nonlinear rheology

I Adaptivity to resolve flow transitions and high velocity
gradients

I Inverse methods to identify unknown constitutive parameters,
basal boundary conditions, and geothermal heat flux

I Statistical inference methods to estimate uncertainty in
unknowns

I Assimilation of observational data into models to quantify
uncertainties in ice sheet dynamics predictions
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Overview of current parallel AMR framework for creeping
non-Newtonian Stokesian flow and transport

∇ · u = 0

−∇ ·
[
η(T,u)

(
∇u +∇u>

)
− pI

]
= ρ0 [1− α (T − T0)] g

ρ0c

(
∂T

∂t
+ u · ∇T

)
−∇ · (k∇T ) = H(u)

n× n×
[
η
(
∇u +∇u>

)
− pI

]
n = 0 on ∂Ω

u · n = 0 and T = Tbc on ∂Ω and T = Tinc at t = 0
Variables:

I T (x, t), u(x, t), p(x, t) — temperature, velocity, pressure

Parameters:

I Ra — Rayleigh number ∼ 106–109

I H(u), η(T,u) — heat production rate, viscosity

I ρ0, T0 — reference density and temperature

I k, c — thermal conductivity, specific heat

I g, α — gravitational acceleration, coefficient of thermal expansion
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Mantle rheology

η(T,u) =
(

dq

A COH
r

) 1
n

ε̇
1−n
2n
II exp

(
Ea + pVa
nRT

)
I η(T,u) — effective viscosity

I d — grain size

I COH — water content in parts per million of silicon

I ε̇II — second invariant of strain rate tensor

I Ea — the activation energy

I p — pressure

I Va — activation volume

I R — universal gas constant

I T — temperature

I A,n, r, q — parameters
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Global mantle flow AMR simulations with realistic rheology
and 1km local resolution at plate boundaries using Rhea
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Global mantle flow AMR simulations with realistic rheology
and 1km local resolution at plate boundaries using Rhea

7 / 27



p4est: Adaptive parallel forests of octrees library
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mangll: High-order spectral element discretization library

I tailored to forest-of-octrees mesh library (p4est)

I Hexahedral elements with 2:1 nonconforming adapted faces

I Arbitrary order spectral element basis functions (nodal, GLL)

I Continuous and discontinuous Galerkin approximations

I Isoparametric or piecewise diffeomorphic geometry mapping
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Weak scalability of AMR for advection on spherical shell
Excellent scalability from 12 to 220,000 cores
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Figure: mesh is adapted every 32 time steps; explicit time stepping;
discontinuous Galerkin, 3rd order spectral elements, 3200 elements/core (45B
DOF on 220K cores); ORNL Jaguar system
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Weak scalability of AMR for advection on spherical shell
AMR consumes < 30% of overall time (unoptimized implementation)
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Figure: mesh is adapted every 32 time steps; explicit time stepping;
discontinuous Galerkin, 3rd order spectral elements, 3200 elements/core (45B
DOF on 220K cores); ORNL Jaguar system
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Rhea: adaptive mantle convection code
Summary of discretization and solution

I Trilinear FEM for temperature, velocity, and pressure
I Conforming approximation by algebraic elimination of

“hanging nodes”

I FEM stabilization:
I Streamline Upwind/Petrov Galerkin (SUPG) for

advection-diffusion system
I Polynomial pressure projection for stabilization of Stokes

equation (Dohrmann and Bochev)

I Explicit integration of energy equation decouples temperature
update from nonlinear Stokes solve

I Nonlinear Stokes solver: lagged-viscosity (Picard) iteration

I Linear Stokes solver: MINRES iteration with block
preconditioner based on AMG V-cycle and inverse viscosity
mass matrix approximation of Schur complement
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MINRES preconditioner for linear Stokes solve

I Block factorization of Stokes system:(
A B>

B −C

)
=
(

I 0
BA−1 I

)(
A 0

0 −(BA−1B> + C)

)(
I A−1B>

0 I

)
where A is discrete viscous operator, B is discrete divergence,
and C is pressure stabilization

I Suggests preconditioner of form:

P =

„
A 0
0 S

«
with S = BA−1B> + C

I Approximate inverse of A with one V-cycle of Algebraic
Multigrid (e.g. ML or BoomerAMG)

I Approximate S with diagonal inverse-viscosity lumped-mass
matrix M̃ (spectrally equivalent in isoviscous case)
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Independence of solver w.r.t. viscosity variation
Using BoomerAMG on Cartesian geometry

µmin µmax
# MINRES

iterations

AMG setup
time (s)

solve time per
iteration (s)

1.00e-0 1.00 86 25.29 5.82
4.98e-2 1.00 80 28.02 5.80
5.53e-4 1.00 75 25.26 5.62
5.53e-4 1.00 90 28.44 5.75
5.53e-4 1.00 91 26.97 5.35
6.14e-6 1.00 95 28.42 5.70
3.06e-7 1.00 93 31.35 6.46

Figure: 216M unknowns, 512 cores
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Weak scalability of Stokes iterative solver in Rhea

#cores #elem/
core

#elem #dofs #iter

setup
time
[s]

matvecs
& inner
prod. [s]

Vcycle
time
[s]

120 5800 700K 2.68M 24 1.39 2.75 2.88
960 4920 4.72M 18.7M 22 2.30 3.94 2.89

7680 4805 36.9M 146M 23 4.07 3.99 5.72
61440 5145 316M 1.26B 21 34.2 4.60 9.03

122880 5135 631M 2.51B 26 112.48 6.29 8.39

I Mid-ocean ridge benchmark problem

I Weak scaling with ∼5000 elements per core on ORNL Jaguar system

I Mesh contains elements over a range of three refinements

I Viscosity varies over an order of magnitude

I Number of MINRES iterations for decrease of residual by factor of 104

I AMG setup and V-cycle time based on ML from Trilinos with
RCB/Zoltan repartitioning within multigrid hierarchy

I Matvec/inner product time includes all MINRES time other than
preconditioner

I Note that in practice, AMG setup is amortized over numerous linear solves
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Inverse ice sheet modeling

I Observations: internal layering structure (ice-penetrating
radar), surface flow velocity (InSAR), age (from ice cores),
surface elevation (altimetry)

I Inversion variables: constitutive parameters, basal boundary
conditions, geothermal heat flux, initial temperature

Bindshadler Ice Stream Margin (N. Nereson) 

Echelmeyer and Harrison (1999) 

ice stream margin ridge 

Ice Stream Margin Properties 

Background: What affects ice streams? 
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Inverse ice sheet modeling, cont.

 Series = {Antarctic Research Series}, 
 Title = {Ice Stream Shear Margins}, 
 Volume = {77}, 
 Year = {2001}} 
 
@article{Raymond+3:2006, 
 Author = {CF Raymond and GA Catania and N Nereson and C J Van 
der Veen}, 
 Journal = {Journal of Glaciology}, 
 Number = {176}, 
 Pages = {3--10}, 
 Title = {Bed radar reflectivity across the north margin of {Whillans 
Ice Stream, West Antarctica} and implications for margin processes}, 
 Volume = {52}, 
 Year = {2006}} 

 

Figure 1 (alternate figure below): Evidence for sea level change contributions from West 

Antarctica; Top left: Surface elevation change rates from radar ranging satellites; Top right: 

Implied ice thickness change rates from University of Texas gravity satellites; Bottom left: 

Ice surface velocities in the Amundsen Sea Embayment (ASE) of West Antarctica from radar 

imaging satellites; Bottom right: UTIG airborne survey coverage across Thwaites Glacier, in 

the ASE, acquired in 2004/05. 
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Inverse ice sheet modeling, cont.

UTIG ice penetrating radar

18 / 27



A general ice sheet inverse problem

minimize F(n,A0, Q, qB , βB) := ‖ u−uobs ‖ΓF S + ‖ z−zobs ‖ΓF S + ‖ φ−φobs ‖Ω

+ ‖ n−npr ‖Ω + ‖ A0−Apr
0 ‖Ω + ‖ Q−Qpr ‖Ω + ‖ q−qpr ‖ΓB + ‖ β−βpr ‖ΓB

subject to:

∇ · u = 0, −∇ ·
h
η(T,u) (∇u+ ∇uT )− Ip

i
= ρg

η(T,u) =
1

2
A−

1
n ε̇

1−n
2n

II , ε̇II =
1

2
tr(ε̇2), ε̇ =

1

2
(∇u+∇uT ), A = A0 exp

„
− Q

RT

«
Dz

Dt
|ΓF S = a, σn|ΓF S = 0, u·n|ΓB = 0, n×n×σn+βBn×n×u|ΓB = 0

ρcu ·∇T −∇ · (K∇T ) = η tr(ε̇2), T |ΓF S = TFS , K∇T · n|ΓB = qB

(∇φ ·∇φ)
1
2 =

1

|u| , φ|ΓF S = 0
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Example: Inverse problem for parameter n

minimize F := ‖ u− uobs ‖ + ‖ n ‖

subject to:

∇ · u = 0

−∇ ·
[
η(T,u) (∇u + ∇uT )− Ip

]
= ρg

ρc

(
∂T

∂t
+ u ·∇T

)
−∇ · (K∇T ) = η tr(ε̇2)

η(T,u) =
1
2
A−

1
n ε̇

1−n
2n

II

ε̇II =
1
2

tr(ε̇2)

ε̇ =
1
2

(∇u + ∇uT )

A = A0 exp
(
− Q

RT

)
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Optimality conditions
state equations:

∇ · u = 0

−∇ ·
h
η(T,u) (∇u + ∇uT )− Ip

i
= ρg

ρc

„
∂T

∂t
+ u ·∇T

«
−∇ · (K∇T ) = η tr(ε̇2)

adjoint equations:

∇ · v = DpF

−∇ ·
h
η
“
∇v + ∇vT

”
− Iq

i
+
Duη

2

“
∇u + ∇uT

”
:
“
∇v + ∇vT

”
=

ρc S∇T + SDuη tr(ε̇2)−∇ ·
h
Sη
“
∇u + ∇uT

”i
−DuF

−ρc
„
∂S

∂t
+ u ·∇S

«
−∇ · (K∇S)−SDT η tr(ε̇2) =

−
DT η

2

“
∇u + ∇uT

”
:
“
∇v + ∇vT

”
−DTF

control equation (e.g. for parameter n):Z t1

t0

»
1

2

“
∇u + ∇uT

”
:
“
∇v + ∇vT

”
− S tr(ε̇2)

–
Dnη −DnF= 0
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Mathematical and computational issues encountered in
deterministic inversion

Beyond generic inverse solver issues, the following must be
addressed in the context of the inverse ice sheet problem:

I Gradient-consistent adjoint discretization schemes

I Inexact Newton-CG for the inverse problem

I Hessian preconditioning, multilevel methods

I Appropriate regularization
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Bayesian inference for inverse problem

I Bayesian framework for statistical inverse problem: when data
and/or model have uncertainties, solution of inverse problem
expressed as a posterior probability density function

I Central challenge: for inverse problems characterized by
high-dimensional parameter spaces, method of choice is to sample
the posterior density using Markov chain Monte Carlo (MCMC)

I For inverse problems characterized by expensive forward simulations,
contemporary MCMC methods become prohibitive

I Intractability of MCMC methods for large-scale statistical inverse
problems can be traced to their black-box treatment of the
parameter-to-observable map (the forward code)

I Goal: develop methods that exploit the structure of the
parameter-to-observation map (including its derivatives), as has
been done successfully in deterministic PDE-constrained
optimization

I Hessian-informed Gaussian process response surface
approximation

I Hessian-preconditioned Langevin methods
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Bayesian formulation of statistical inverse problem
Given:

πpr(x) := prior p.d.f. of model parameters x

πobs(y) := prior p.d.f. of the observables y

πmodel(y|x) := conditional p.d.f. relating y and x

Then posterior p.d.f. of model parameters is given by:

πpost(x) def= πpost(x|yobs)

∝ πpr(x)
∫
Y

πobs(y)πmodel(y|x)
µ(y)

dy

∝ πpr(x)π(yobs|x)

From A. Tarantola, Inverse Problem Theory, SIAM, 2005
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Gaussian additive noise

Given the parameter-to-observable map y = f(x), a common noise
model is Gaussian additive noise:

yobs = f(x) + ε, ε ∼ N (0,Γnoise)

If the prior is taken as Gaussian with mean xpr and covariance Γpr, then
the posterior can be written

πpost(x) ∝ exp
(
− 1

2 ‖ f(x)− yobs ‖2Γ−1
noise
− 1

2 ‖ x− xpr ‖2Γ−1
pr

)
Note that “most likely” point is given by

xMAP
def= arg max

x
πpost(x)

= arg min
x

1
2 ‖ f(x)− yobs ‖2Γ−1

noise
+ 1

2 ‖ x− xpr ‖2Γ−1
pr

This is an (appropriately weighted) deterministic inverse problem!
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Gaussian additive noise, linear inverse problem
Suppose further the parameter-to-observable map is linear, i.e.

y = Fx

Then the posterior can be written

πpost(x) ∝ exp
(
−1

2 ‖ Fx− yobs ‖2Γ−1
noise
−1

2 ‖ x− xpr ‖2Γ−1
pr

)
The posterior is then Gaussian with

x ∼ N (xMAP,Γpost)

The covariance is the inverse Hessian of the negative log posterior:

Γ−1
post = F TΓ−1

noiseF + Γ−1
pr

= ∇2
x(− log πpost)

I.e., the covariance is given by the inverse Hessian of the
regularized misfit function that is minimized by deterministic
methods
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Summary of mathematical/computational research agenda
I Overall goal: Scalable, parallel, adaptive full Stokes ice sheet

simulator equipped with deterministic and statistical inversion
capabilities

I Base level enhancements to existing nonlinear Stokes code
I free surface
I basal boundary conditions

I Further forward solver enhancements (as needed)
I high order spectral element DG/CG discretization
I fully implicit time integration
I full Newton solver

I Deterministic inversion
I gradient-consistent/adjoint-appropriate discretization
I globalization of inexact Newton-CG solver
I multilevel Hessian preconditioner
I regularization

I Statistical inversion
I reduce-then-sample: Gaussian process response surface

methods
I sample-then-reduce: Langevin-based proposals for MCMC
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