Annual CO_2 and O_2 dynamics in the Ross Sea, Antarctica

Matthew Long

Environmental Earth System Science Stanford University

16 February 2010

Importance of the Southern Ocean

Anthropogenic CO₂

based on tracer time distributions *Khatiwala et al. 2009*

Southern Ocean

Antarctic continental shelves

Ross Sea

Ice export, heat loss

rapidfire.sci.gsfc.nasa.gov

Deepwater formation

Padman et al. 2009

 $\mathsf{CO}_2 \mathsf{sink}$

along $171^{\circ} E$

Arrigo et al. 2008

- 1. What are the mechanics of the Ross Sea CO_2 sink?
- 2. What are the sensitivities of the system?
- 3. How do key variables scale relatively?

Upper ocean mass balance

Upper ocean mass balance

Net community production

Net community production

$$h\frac{\partial C}{\partial t} = J_{phy} + J_{gas} + J_{ncp}$$

High latitude, weakly buffered

Sarmiento & Gruber 2006

Extreme drawdown

Seasonality

SeaWiFS-derived primary productivity along 180° E, Arrigo algorithm

Gas exchange

 pCO_2^{atm}

$$h\frac{\partial C}{\partial t} = J_{phy} + J_{gas} + J_{ncp}$$

Gas exchange

 pCO_2^{atm}

$$J_{gas,O_2} = k^{o_2} (O_{2,sat} - O_2^{sw})$$
$$J_{gas,CO_2} = k^{co_2} \gamma \left(p CO_2^{atm} - p CO_2^{sw} \right)$$

Gas exchange

 pCO_2^{atm}

$$J_{gas,O_2} = (1-A) k^{o_2} \Delta O_2$$
$$J_{gas,CO_2} = (1-A) k^{co_2} \gamma \Delta p CO_2$$

where A is the fractional ice coverage.

Differing O₂ and CO₂ dynamics

Lines show 1-box model simulation with constant NCP (39.5 mmol C m $^{-2}$ d $^{-1})$ and constant wind (4.2 m s $^{-1}).$

 Air-sea exchange is more sluggish for CO₂ than for O₂.

 pCO_2 continues to decline after O_2 concentrations have stabilized.

$$\Delta O_2 / Ar = \frac{(O_2 / I_1)}{(O_2 / I_2)}$$

- $\frac{(O_2/Ar)_{sw}}{(O_2/Ar)_{sat}}$
- ⇒ biological oxygen saturation (bubble and state change components removed)

Excess O₂?

 O₂:P conservative with respect to biology.

Gas exchange leads to O_2 deficit in summer.

Stratification

$$h\frac{\partial C}{\partial t} = J_{phy} + J_{gas} + J_{ncp}$$

Stratification

Mechanics :: stratification

NBP06-08, spring cruise

Spring water column observations

Fronts

$$b = -g
ho/
ho_o$$

Buoyancy generation

ROMS simulation results

Enhanced winter-spring transition at fronts

Spring water column observations

Annual sink dynamics Forcing

Annual sink dynamics Upper ocean properties

Annual sink dynamics Fluxes

Net sink for both O_2 and CO_2

$$\int J_{gas,O_2} dt = 110 \text{ mol } \text{m}^{-2}$$
$$\int J_{gas,CO_2} dt = 1.4 \text{ mol } \text{m}^{-2}$$

Annual sink dynamics Interannual variability (sign convention reversed)

Arrigo & Van Dijken 2007

Influence on the atmosphere

Atmospheric potential oxygen

APO is mostly conservative with respect to the terrestrial biosphere and fossil fuel emissions. Battle et al. 2008

Representing heterogeneity

Model biases

Anthropogenic CO_2 (μ mol I⁻¹)

CFC-11 (μ mol I⁻¹)

Thorten et al. 2009

Lachkar et al. 2007

