

Community Atmosphere Model (CAM) CAM4 (Track 1)/CAM5(Track 5)

Rich Neale, Cecile Hannay, Sungsu Park, Andrew Gettleman, Hugh Morrison, Joe Tribbia, Peter Lauritzen David Williamson, Julio Bacmeister *NCAR* Phil Rasch, Xiaohong Liu, Steve Ghan *PNNL*

CAM Evolution

Model	CCSM3 (2004)	CCSM3.5 (2007)	CCSM4 (Apr 2010)	CESM1 (Jun 2010)
Atmosphere	CAM3 (L26)	CAM3.5 (L26)	CAM4/Track 1 (L26)	CAM5/Track5 (L30)
Boundary Layer	Holtslag and Boville (93)	Holtslag and Boville	Holtslag and Boville	UW <i>Diagnostic TKE</i> Park et al. (09)
Shallow Convection	Hack (94)	Hack	Hack	UW <i>TKE/CIN</i> Park et al. (09)
Deep Convection	Zhang and McFarlane (95)	Zhang and McFarlane Neale et al.(08), Richter and Rasch (08) mods.	Zhang and McFarlane Neale et al., Richter and Rasch mods.	Zhang and McFarlane Neale et al., Richter and Rasch mods.
Stratiform Cloud	Rasch and Kristjansson (98) <i>Single Moment</i>	Rasch and K. Single Moment + freeze drying	Rasch and K. Single Moment + freeze drying	Morrison and Gettelman (08) Double Moment Park Macrophysics Park et al. (10)
Radiation	CAMRT (01)	CAMRT	CAMRT	RRTMG lacono et al. (2008)
Aerosols	Bulk Aerosol Model (BAM)	BAM	BAM	Modal Aerosol Model (MAM) Ghan et al. (2010)
Dynamics	Spectral	Finite Volume (96,04)	Finite Volume	Finite Volume
Ocean	POP2 (L40)	POP2.1 (L60)	POP2.2	POP2.2 - <i>BGC</i>
Land	CLM3	CLM3.5	CLM4 - <i>CN</i>	CLM4
Sea Ice	CSIM4	CSIM4	CICE	CICE

Microphysics and modal aerosols permit the study of aerosol indirect effects

CAM4

CAM5

Addressing Forcing Uncertainty

Community Climate System Model

Summer Surface Shortwave Down Differences (NH-JJA,SH-DJF)

Track 5 (2 deg) minus Track 1 (1 deg)

Clear Sky

25

20

15

10

6

2

0

-2

-4

-6

-10

-15

-20

-25

Track 5 has snow albedos higher than Track 1

Community Climate System Model

Climate Sensitivity

Track 1	3.4 K
Track 5	4.5 K
Track 5 PD aerosols	3.5 K
Track 5	2 2 V
1850 PD aerosols	-2.2 N

20th Century All Forcing Coupled Simulations

- 1850-2005 forcing fields
 - CCSM4/Track 1 (1 deg), from year 134
 - CESM1/Track 5 (2 deg), from year 893
 - GHGs, solar, large volcanoes burdens
 - Prescribe aerosol burdens and surface deposition (Track 1)
 - Prescribe aerosol emissions predicted surface deposition (Track 5)
- Global, land, hemispheric timeseries

Surface Temperature Change

Surface Temp Change (1990-2004) (K)

Track 1 – 1 deg

0.5 0.2

Short Wave Cloud Forcing Change

Aerosol and Cloud Changes (1990-2004) (Track 5)

20th C JJA Arctic Sea Ice Change

20thC Sea Ice Change Arctic

20thC Sea Ice Change Antarctic

Summary

- CAM4/Track 1 climate has similar behavior to CAM3.5 climate
- Higher resolution (1 deg) results in decreased short-wave cloud forcing in mid-latitudes
- CAM5/Track 5 includes a significant number of physics enhancements
- Aimed at addressing uncertainty in *indirect effects* and *cloud feedbacks*
- Coupled climate is competitive with Track 1 (1deg/2deg)
- Arctic climate has more low cloud cover, but lower water; increased cold bias in winter
- Arctic sea ice sees a significant summer increase in downwelling shortwave
- Necessary for higher albedos at the present
- Although Track 5 has higher climate sensitivity 20th century response finishes cooler than observed and Track 1
- Different response between hemispheres
 - S. Hem. follows observations and Track 1 well
 - N. Hem. remains cool until mid century followed by strong warming in 1980s (AIE)
- Polar sea-ice volume shows significant decline in late 1990s (< track 1)
- Inclusion of turbulent mountain stress has negative impact in Antarctic sea-ice

CAM3 -> CAM5

Physics Changes

CAM3.5	CAM4	CAM5
 ✓ Deep convection dilution and convective momentum transports Increase sensitivity to tropical humidity; improves diurnal cycle, variability and ENSO ✓ Freeze drying of cold cloud 	 ✓ Deep convection dilution and convective momentum transports ✓ Reduced ice cloud fall speeds at 2 degree resolution More accurate water transport into stratosphere 	 ✓ Deep convection dilution and convective momentum transports ✓ Land vs. ocean tuning for autoconversion efficiency Implicit representation of the affects of aerosols on cloud drop size ✓ Modal Aerosol Model (MAM3) Accounts for aerosol species interaction; predicts aerosol deposition ✓ 2 moment microphysics (number + size) for ice and liquid Allows for activation of aerosols based aerosol number availability ✓ University of Washington (UW) TKE based moist boundary layer Accurate representation of stable, moist boundary layers ✓ University of Washington (UW) CIN/TKE based entraining shallow convection Boundary layer turbulence driven shallow cumulus ✓ Rapid Radiative Transfer Model Improved radiative calculation of the water vapor continuum

Surface Temperature Change

High Latitudes

Surface Temp Change (1960-1979) (K)

Surface Temp Change 2xCO2 experiments

Community Climate System Model