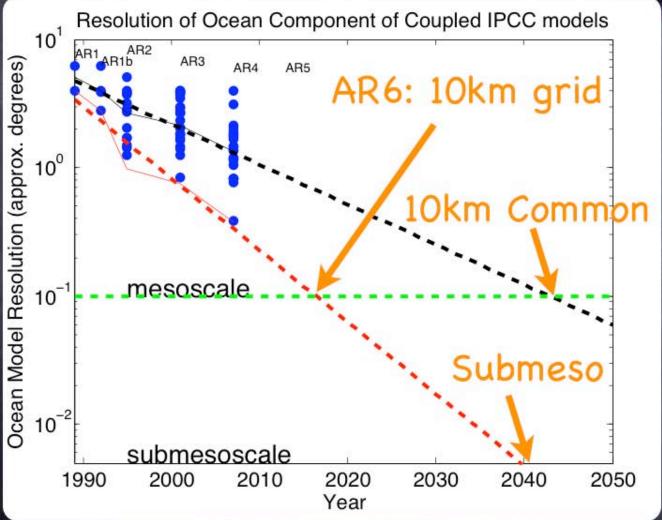
Creation of an Eddy Parameterization Challenge Suite


Scott Bachman

with Frank Bryan, John Dennis, and Baylor Fox-Kemper NSF OCE 0825614

<u>Outline</u>

- What is the motivation behind the challenge suite?
- What will it be used for and what is the justification for creating it?
- What the challenge suite *REALLY* is
- Idealized examples
- Future Work

The Future of Resolution

Tracer Flux-Gradient Relationship

$\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

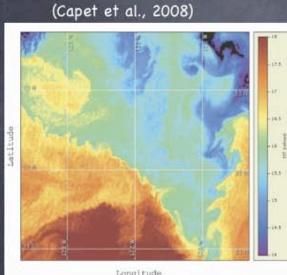
Virtually all subgridscale eddy closures may be written as: GM, Redi, FFH Submesoscale

Relates the eddy flux to the coarse-grain gradients

May have a flow/property dependent M.

$\mathbf{u}'\tau' = -\mathbf{M}\nabla\overline{\tau}$

Fox-Kemper, Ferrari, & Hallberg (2008) form (a mixed layer (submeso) eddy param.): $\begin{bmatrix} \overline{u'\tau'} \\ \overline{v'\tau'} \\ \overline{v'\tau'} \\ \overline{w'\tau'} \end{bmatrix} = -\begin{bmatrix} 0 & 0 & -\Psi_y \\ 0 & 0 & \Psi_z \\ \Psi_y & -\Psi_z & 0 \end{bmatrix} \begin{bmatrix} \overline{\tau}_x \\ \overline{\tau}_y \\ \overline{\tau}_z \end{bmatrix}$


Antisymmetric Elements in Fox-Kemper, Ferrari, & Hallberg (2008) are scaled to overturn fronts, make vertical fluxes extract PE, and restratify the fluid, At a rate validated against eddying simulations!

(NASA GSFC Gallery)

100

km

The Character of the Submesoscale

Fronts
Eddies
Ro=O(1)
Ri=O(1)
near-surface

Fig. 15. Sets under extracted at 132 (T12-3 Jun 2006) eff Peid Conception in the Fig. 15. Sets under extracted at 132 (T12-3 Jun 2006) effective at 132 (T12-3 Jun 2006) effec

Simple Spindown

Simple Spindown

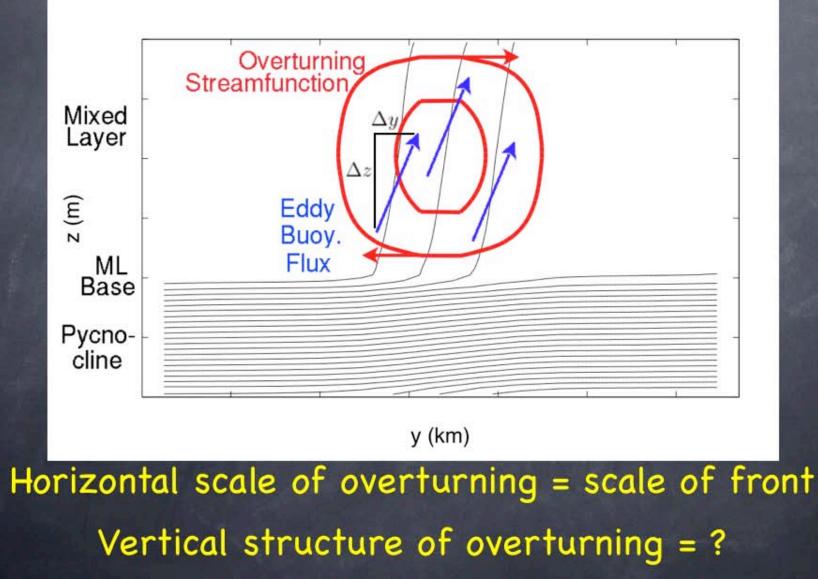
Simple Spindown

The Problem is: The mesoscale equivalent isn't rEady

SFFH param. doesn't do interior stratification/ PV gradients

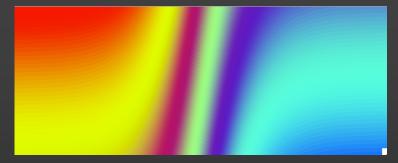
OPV jumps are OK, e.g, surface & mixed layer base

But, Mesoscale==Full Depth, so PV Varies

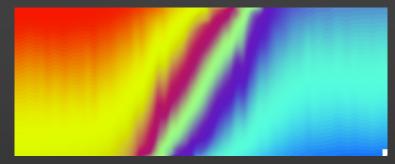

Smith (07) shows interior PV gradients dominate mesoscale energy extraction

What to do? The Parameterization Challenge Suite

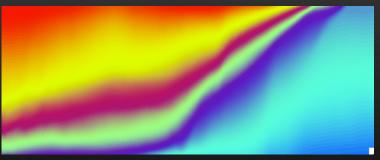
- Uses a model (MITgcm) that includes shear, strain, stratification, etc.
- Will simulate individually: O(2000) simulations
- Simultaneous runs exploring parameter space
- A suite of several different challenges, using both idealized and reality-based problems
- Will extract "typical" eddy configurations in the global model by EOF or SOM

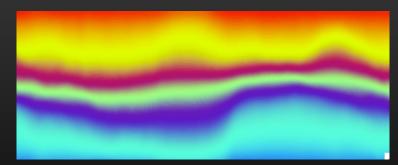

Examples?

Overturning Schematic: An Eady-like Problem



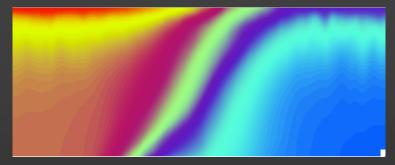
Eady Snapshots


Density surfaces

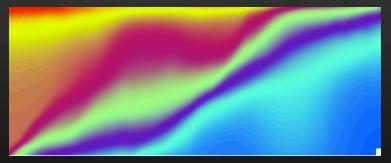

Initial configuration

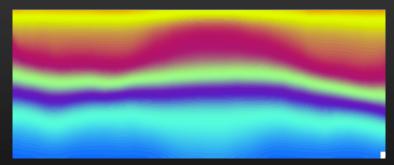
10 days

20 days


30 days

Charney Snapshots


Density surfaces


Initial configuration

10 days

20 days

30 days

Evaluating the Results

• How fast is the slumping?

 Multiple tracer approach to diagnose M (Bratseth, 1998)

The Future!

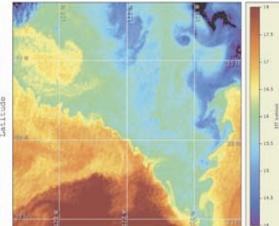
Investigate smoothing operator in FVG

$$\begin{pmatrix} c^2 \frac{d^2}{dz^2} - N^2 \end{pmatrix} \widetilde{\boldsymbol{\Psi}} = -\kappa \nabla \overline{b}$$
$$\widetilde{\boldsymbol{\Psi}} = 0, \quad z = 0, -H$$

•Selection of more challenges

- PV jumps
- Sinusoids

•Suggestions from the audience?

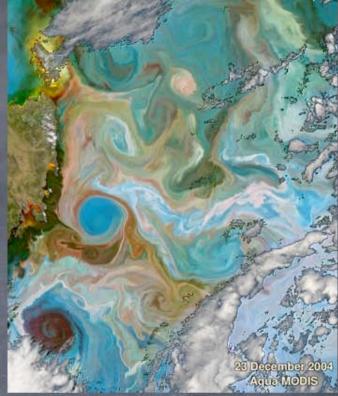

(NASA GSFC Gallery)

100

km

The Character of the Mesoscale

(Capet et al., 2008)


Longitude

Fto. 16. Sea surface temperature measured at 1832 UTC 3 Jun 2006 off Point Conception in the "alifornia Current from CoastWatch (http://coastwatch.pfeg.noaa.gov). The fronts between recently pwelled water (i.e., $15'-16^{\circ}C$) and offshore water ($\geq 17'C$) show submessionale instabilities with wave ngths around 30 km (right front) or 15 km (left front). Images for 1 day earlier and 4 days later show nce of the instability events

Boundary Currents Eddies

Ro=O(0.1) Ri=O(1000)

Full Depth

But, dominant eddy process still baroclinic instability.

Why can't we just use submesoscale scaling of FFH? for a flow-dependent GM-like param?

MORAL OF THIS SLIDE:

Scaling Laws for streamfunction can be deduced empirically from the models

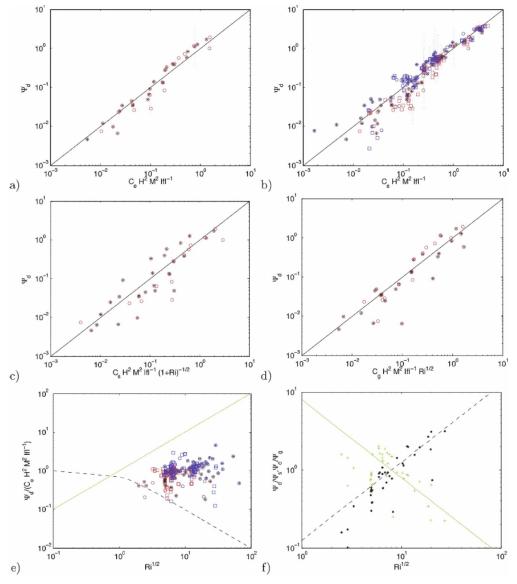


FIG. 14. Magnitude of Ψ_d vs theories for magnitude of Ψ for simulations with diurnal cycle (blue) and without (red) starting from balanced (circles) or unbalanced (squares) initial conditions. Plus signs and crosses indicate balanced simulations where $\operatorname{Ri}_0 > 1$ or $\operatorname{Ri}_0 < 1$ initially: (a) Ψ_d in the balanced, no diurnal cycle simulations vs $\overline{C_c b_y}^{xz} H^2 |f|^{-1'}$, $C_e = 0.06$, and (b) unbalanced and dimal cycle simulations, $C_e = 0.08$; (c) Stone's theory, (36), $C_s = 0.53$; (d) Green's theory, (37), $C_g = 0.0085$; (e) $\Psi_d / \overline{C_e b_y}^{xz} H^2 |f|^{-1'}$ vs $\operatorname{Ri}^{1/2}$. Also shown are lines parallel to $\operatorname{Ri}^{1/2}$ and $(1 + \operatorname{Ri})^{-1/2}$: (f) $\Psi_d \Psi_s$ (black dots) and Ψ_d / Ψ_g (green crosses) vs $\operatorname{Ri}^{1/2}$. Also shown are lines parallel to $\operatorname{Ri}^{\pm 1/2}$; Ψ_d , Ψ_s , and Ψ_g are defined in (35), (36), and (37).