Inferences and Implications for Parameterizations from a Global Diagnosis of Mesoscale Tracer Stirring

> Baylor Fox-Kemper, with Frank Bryan, John Dennis, Andrew Margolin, and Scott Bachman

> OMWG Meeting, 12/11 9:25-9:45

The Character of

the Mesoscale

(Capet et al., 2008)

Longitude

FIG. 16. Sca surface temperature measured at 1832 UTC 3 Jun 2006 off Point Conception in the California Current from CoastWatch (http://coastwatch.pfeg.noaa.gov). The fronts between recently upwelled water (i.e., 15°–16°C) and offshore water (≥17°C) show submesoscale instabilities with wavelengths around 30 km (right front) or 15 km (left front). Images for 1 day earlier and 4 days later show persistence of the instability events. Boundary Currents Eddies
 Eddies OR Ro=O(0.1)Ri=O(1000) Full Depth Projects on Fronts IOOkm, months

Eddy processes mainly baroclinic & barotropic instability. Parameterizations of baroclinic instability (GM, Visbeck...).

Tracer Flux-Gradient Relationship $\mathbf{u}'\tau' = -M\nabla\overline{\tau}$

 Virtually all extant subgridscale eddy closures may be written as above, e.g.: GM, Redi, FFH

Relates the eddy flux to the coarse-grain gradients

May have a flow/property dependent M:
 (FFH, Visbeck, Green, Held & Larichev, Stone, Canuto & Dubovikov, Griffies et al '05)

May consider gridscale (FFH, Hallberg & Adcroft)

Isopycnal & lagrangian coordinate versions possible/known

$\mathbf{1}'\tau' = -\mathbf{V}\nabla\tau$

General Form

 $u'\tau'$ $nn'\tau'$

 $\begin{bmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{bmatrix} \begin{bmatrix} \overline{\tau}_x \\ \overline{\tau}_y \\ \overline{\tau}_z \end{bmatrix}$

Diagnostically: 9 elements requires at least 3 similar-transport tracers to specify uniquely

 Could vary tracer by tracer, or active tracer
 vs. passive, etc. In practice we don't do this.

$\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

Anistropic* Redi Form

 $\frac{\overline{u'\tau'}}{\overline{v'\tau'}} = - \begin{bmatrix} K_{xx} & K_{xy} & \hat{\mathbf{x}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} \\ K_{yx} & K_{yy} & \hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} \\ \hat{\mathbf{x}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} & \hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} & \tilde{\nabla} \mathbf{z} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} \end{bmatrix} \begin{bmatrix} \overline{\tau}_x \\ \overline{\tau}_y \\ \overline{\tau}_z \end{bmatrix}$ Yellow Elements are horizontal stirring Blue Elements in Redi (1982) are symmetric and scaled to make eddy mixing along neutral surfaces *Anistropic form due to Smith & Gent 04

$\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

Anisotropic* Gent-McWilliams

0

 $-\mathbf{\hat{x}}\cdot\mathbf{K}\cdot\mathbf{\tilde{
abla}}\mathbf{z}$

 $-\hat{\mathbf{y}}\cdot\mathbf{K}\cdot\tilde{
abla}\mathbf{z}$

 $w'\tau'$ Antisymmetric Elements in GM (1990) are scaled to overturn fronts, make vertical fluxes extract PE, and restratify the fluid equivalent to eddy-induced advection Q: Same K as Redi? *Anistropic form due to Smith & Gent 04 *Tensor Form (Griffies, 98)

Thursday, December 10, 2009

 $u'\tau'$

$\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

Fox-Kemper, Ferrari, & Hallberg (2008) form (a mixed layer (submeso) eddy param.): $\begin{bmatrix} \overline{u'\tau'} \\ \overline{v'\tau'} \\ \overline{v'\tau'} \\ \overline{w'\tau'} \end{bmatrix} = -\begin{bmatrix} 0 & 0 & -\Psi_y \\ 0 & 0 & -\Psi_y \\ \overline{\psi}_y & -\Psi_x \end{bmatrix} \begin{bmatrix} \overline{\tau}_x \\ \overline{\tau}_y \\ \overline{\tau}_z \end{bmatrix}$

Antisymmetric Elements in Fox-Kemper, Ferrari, & Hallberg (2008) are scaled to overturn fronts, make vertical fluxes extract PE, and restratify the fluid, At a rate validated against eddying simulations!

3 equations/tracer 9 unknowns (Mcomponents) BY USING 3 or MORE TRACERS, can determine M!!! (a la Plumb & Mahlman `87, Bratseth `98) Use a Natural, Mesoscale Eddy Environment to Test Out: $\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

We Use: Years 16-20 of a Global 0.1 Degree Model (sim to Maltrud & McClean '06)

9 Passive Tracers To Overdetermine ${f M}$

Use a Natural, Mesoscale Eddy Environment to Test Out:

Testing the Diagnosis:

Note: T not used for diagnosis, active tracers are apparently transported as passive ones are!

Thursday, December 10, 2009

Use a Natural, Mesoscale Eddy			
Environment to Test Out:			
$u'\tau'$	K_{xx}	K_{xy} $\mathbf{\hat{x}} \cdot \mathbf{K}$	$\cdot ilde{ abla}_{\mathbf{z}} \qquad \overline{ au}_{x}$
$\overline{v'\tau'} =$	$ K_{yx}$	K_{yy} $\mathbf{\hat{y}} \cdot \mathbf{K}$	$\cdot ilde{ abla}_{\mathbf{z}} \hspace{0.5cm} \hspace{0.5cm} \overline{ au}_{y} \hspace{0.5cm} $
$\overline{w'\tau'}$	$\mathbf{\hat{x}} \cdot \mathbf{K} \cdot \mathbf{\tilde{\nabla}} \mathbf{z} \ \mathbf{\hat{y}}$		$\mathbf{x} \cdot \mathbf{\tilde{\nabla}}_{\mathbf{z}}$
Correct sha	pe/scale at 1	50m depth:	Llon Diffusivity is
	120	500	roughly Trace(M)
		450 -	
	20	400 -	Peak Near
		350 -	500 m^2/s
		8 300 - E	
	40		Median:
50 100 150 50 10	0 150 50 100 150	₹ ²⁰⁰ -	2000m 2/s
		150 -	1 16% populino
80 60 80 60 60 60	80 60	100 -	the commentative -
40 20 40 20	40 20	50 -	Stall Blackson and a los
50 100 150 50 10	0 150 50 100 150	0 2000	4000 6000 8000 100 Trace(M)

Use a Natural, Mesoscale Eddy Environment to Test Out: $u'\tau'$ $-\mathbf{\hat{x}}\cdot\mathbf{K}\cdot\mathbf{\tilde{
abla}}\mathbf{z}$ $\overline{ au}_x$ $v'\tau'$ $\hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z}$ $\overline{ au}_y$ $\mathbf{\hat{x}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} \ \mathbf{\hat{y}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z}$ Result 1: Antisymmetric (GM) Elements scale with corresponding Symmetric (Redi) elements in extratropics. Thus, GM/Redi basic shape of M is

roughly correct (some detailed validation remains)

-200

0

(Sym, -Asym,)/slope

200

400

600

800

Thursday, December 10, 2009

10000

9000 -

8000 -

7000 -

6000 -

5000 -

4000 -

3000 -

2000 -

1000 -

-1000

-800

-600

-400

NSEF & Diabatic/ Transition Layer

Danabasoglu & Marshall

Danabasoglu, Ferrari & McWilliams
 McWilliams

Ferrari, McWilliams,
 Canuto, Dubovikov

Surface-intensified GM, no boundary condition issues, no overrestratificiation of Mixed Layer by Eddies

FIG. 2. A conceptual model of eddy fluxes in the upper ocea Mesoscale eddy fluxes (blue arrows) act to both move isopycr surfaces and stir materials along them in the oceanic *interior*, b the fluxes become parallel to the boundary and cross density su faces within the *BL*. Microscale turbulent fluxes (red arrows) m

Near-surface eddy flux scheme (Ferrari, McWilliams, Canuto, Dubovikov)

EDDY-INDUCED MERIDIONAL OVERTURNING (GLOBAL)

A new eddy parameterization (Ferrari, Griffies, Nurser & Vallis)

The eddy streamfunction is given by the elliptic problem

$$\begin{pmatrix} c^2 \frac{\mathrm{d}^2}{\mathrm{d}z^2} - N^2 \end{pmatrix} \widetilde{\boldsymbol{\Psi}} = -\kappa \nabla \overline{b}$$
$$\widetilde{\boldsymbol{\Psi}} = 0, \quad z = 0, -H$$

Properties of the new parameterization

- releases mean available potential energy
- the eddy transport vanishes at the ocean boundaries
- the eddy transport is dominated by the first baroclinic mode (if c is set to speed of first baroclinic mode)
- does not require any tapering function
- reduces to GM for c=0

Eden, Jochum, Danabasoglu:

g. 1. Annual mean thickness diffusivity (*K*) in m²/s at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of *K* are own for the interior region only, i.e. values of *K* in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The nd mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.

Eden, Jochum, Danabasoglu vs. Eigenvalue #1

g. 1. Annual mean thickness diffusivity (*K*) in m²/s at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of *K* are lown for the interior region only, i.e. values of *K* in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The nd mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.

Eden, Jochum, Danabasoglu vs. M₂₂

g. 1. Annual mean thickness diffusivity (K) in m²/s at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of K are own for the interior region only, i.e. values of K in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The nd mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.

Eden, Jochum, Danabasoglu vs. Eigenvalue #2

g. 1. Annual mean thickness diffusivity (*K*) in m²/s at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of *K* are lown for the interior region only, i.e. values of *K* in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The nd mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.

Eden, Jochum, Danabasoglu vs. M₁₁

g. 1. Annual mean thickness diffusivity (K) in m²/s at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of K are own for the interior region only, i.e. values of K in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The nd mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.

n

×21

×22

Thursday, December 10, 2009

Conclusions

Passive Tracers are used in a global 0.1 model to diagnose Mesoscale Flux-Gradient Relationship

- Resembles GM ~ Redi with O(500 to 2000m²/s at 150m depth, but long tails...)
- Strongly anisotropic (mostly zonal, strong flow)
- Depth-dependent Streamfunction: MLB intensified changes behavior in diabatic/mixed layer
- Active vs. Passive tracers apparently not an issue

M_{zx} & M_{xz} are O(along-iso), detailed contrast later
Thursday, December 10, 2009

FIG. 12. Inferred horizontal eddy diffusivity κ (m² s⁻¹): (top) zonal mean and (bottom) vertical mean over the thermocline (0–1200 m). The contour intervals are (top) 500 and (bottom) 1000 m² s⁻¹. The thick line indicates the zero contour. Also indicated in the bottom panel are the 10-, 70-, and 130-Sv contours of the barotropic streamfunction.

Ferreira, Marshall, Heimbach 05

Zonal mean (scalar) diffusivity vs. Eigenvalues of the symmetric tensor

Same shape--no negatives!

10

km

The Character of the Submesoscale (Capet et al., 2008) Tronts & ageo

wind

 Eddies
 Eddies Ro=O(1)
 Ri=O(1)
 near-surface @ 10km, days Parameterizations of eddies (FFH)

100

m

The Character of (Capet et al., 2008)

Longitude

FIG. 16. Sea surface temperature measured at 1832 UTC 3 Jun 2006 off Point Conception in the California Current from CoastWatch (http://coastwatch.pfeg.noaa.gov). The fronts between recently pwelled water (i.e., 15"-16°C) and offshore water (≥17°C) show submesoscale instabilities with wave gths around 30 km (right front) or 15 km (left front). Images for 1 day earlier and 4 days later show @ 3d

- turbulent
- @ Ro>>1
- @ Ri<1 to <<1

near-surface, bottom surface wave (Langmuir, breaking) internal waves/loss of balance/nonhydrostatic 100m, minutes-hrs.