New Model ENSO Diagnostics

Samantha Stevenson OMWG meeting, 12/10/09

Supported by:

NASA NNX09A020H: NESSF09, "Understanding Decadal ENSO Variability in a Warming World"

CIRES Graduate Student Fellowship

Primary model run: 1200 years, T31x3 CCSM3.5

Global wavelet spectrum: peak near 3 years

Significant spectral variations in ENSO

Run compares well to CORE forcing hindcast

Recipe for Testing ENSO

0. Pick a time series, any time series... I use NINO3.4 SST.

1. Form the probability distribution function of the wavelet power at each frequency

2. Calculate the amount of overlap using the "integrated joint PDF" IJPDF at frequency ν

Recipe for Testing ENSO

3. Find confidence intervals using subsamples of the data

4. Hypothesis testing for consistency between time series

EXAMPLE 1: Model "Self-Overlap"

EXAMPLE 1: Model "Self-Overlap"

1200 year CCSM3.5 run

2000 year GFDL CM2.1 run

90% confidence interval gets smaller with "chunk" length Dependence is ~exponential FIT SLOPE IS IDENTICAL TO 90% CONFIDENCE!

Why Test Model Self-Overlap?

1. Amount of overlap between "chunks" of a run and the full run is dependent on the "chunk" length

- 2. The dependence holds across models
- 3. This can be used to predict how long you should run any climate model for a given accuracy

for example: to get within 10% of "real" ENSO, run for at least 250 years

Hypothesis Testing Procedure

Why Hypothesis Testing?

1. Quantifies amount of agreement between model runs/ model and data, at any frequency

2. Minimum run length needed to measure statistically significant differences can be obtained

3. Accuracy of short model runs can be tested without running for a long time

4. Tuning can be performed as a function of frequency

Conclusions

Statistically robust way to measure agreement between time series Method is universal - any time series from any source

Range of self-overlap falls off exponentially with length Universal "scaling" relation, applies across models: at least 300-400 years needed

CCSM3.5 agrees with observations through most of the ENSO band CCSM and CM do NOT agree in the 4-8 year band Neither model performs well at long periods