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Significant spectral variations in ENSO

Global wavelet spectrum: 
peak near 3 years

NINO3.4 SST

Primary model run: 1200 years, T31x3 CCSM3.5
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between 0 and 1, and provides a measure of how well the
time series agree statistically (ignoring the ENSO phase at
a particular time).

Note that the choice of wavelet basis impacts the results
to a minor extent. This analysis uses the Mexican hat, or
‘derivative of Gaussian’, wavelet, of degree 2:

Ψ(η) =
−1√
Γ( 52 )

d2

dη2
(e

−η2

2 ) (2)

where η is the nondimensionalized time parameter.
When applied to subsets of a single time series, the IJPDF

measures the amount of internal variability present (“self-
overlap”), which depends on the subset length. The IJPDF
can also be used to quantify agreement between two records:
for example, two model simulations, or observational data
and a model run.

The relevant steps for this analysis are as follows:
1. Choose the two time series to compare (e.g., subsets of

a model vs. entire run, subsets of a model vs. data).
2. Create a time series for the region of interest.
3. Perform a wavelet analysis on the two time series.
4. Compute the probability distribution function of the

wavelet power, for all time series of interest.
5. Calculate the IJPDF value according to Equation 1.
6. Determine confidence intervals on the IJPDF values by

subsampling the data. Internal variations lead to changes in
the IJPDF for each subset; a distribution of the IJPDF it-
self is formed. Confidence intervals at the 1−α significance
level may be obtained using the α

2 and 1 − α
2 percentiles

of the IJPDF distribution. Alternatively, the tables in the
next section may be used where subsampling is impractical
(i.e. for short data records).

Following Steps 1-6 yields a quantitative measure of spec-
tral agreement between one or more time series, accompa-
nied by well-defined significance levels. In this sense, the
wavelet probability method is a natural extension of the
work of Neale et al. [2008], who provided qualitative esti-
mates of agreement between model and observed ENSO.

Three examples of the IJPDF analysis are presented here.
All three rely on the wavelet PDF generated using NINO3.4

Figure 1. Probability distribution functions for mean
wavelet power. The white line represents the median
value for the model run, while the gray line is the mean
value generated using the CORE hindcast. Dashed black
lines correspond to the 25th and 75th percentile values
for the model run (interquartile range).

time series (steps 1-4, above): the examples show a self-
overlap calculation (Section 2.1), a data/model comparison
(Section 2.2), and a demonstration of the use of hypothesis
testing to accept or reject a climate model based on ENSO
variability (Section 2.3). A suite of Matlab codes developed
for this purpose have been used in all three calculations;
codes are available on the Web1.

2.1. Self-Overlap

The scatter in IJPDF values generated using subsamples
of a time series can be used to calculate the expected de-
gree of self-agreement, and in turn to predict the necessary
length the time series must have for a given level of accu-
racy. This is done here for the CCSMcontrol run: first, the
internal ENSO variability is measured by calculating the
IJPDF between all subintervals of the model run. The 90%
confidence interval is then the distance between the 5th and
95th percentiles of the resulting IJPDF distribution (Figure
2, upper left).

Table 1. Dependence of the 90% confidence interval width
on model subinterval length, from confidence intervals aver-
aged over the 2-6 year band. ∆β0 and ∆β1 refer to the bounds
of the 90% confidence intervals on those coefficients.

Run β0 β1 ∆β0 ∆β1

CCSMcontrol -0.553 -0.0078 -0.920 - -0.185 -0.0091 - -0.0065
GFDL CM2.1 -0.237 -0.0098 -0.458 - -0.015 -0.011 - -0.0090

Subintervals of a single model run are by definition drawn
from the same distribution. Therefore, the upper limit of
the IJPDF distribution should approach 1 as the subinter-
val length increases. This is indeed observed in Figure 2;
longer subintervals progressively increase in IJPDF.

A relationship between the width of the confidence inter-
val on IJPDF (Wim) and the model subinterval length L is
derived, based on a set of 12 subinterval lengths (Figure 2,
upper right-hand panel). The regression has an exponential
dependence on subinterval length:

lnWim = β0 + β1L (3)

The universality of this relation is then tested using
a 2000-year integration of the GFDL CM2.1 [Wittenberg,
2009]. For GFDL CM2.1, the width of the confidence in-
terval again decreases exponentially. The slope of the rela-
tion matches to within 90% confidence; model self-overlap
is therefore statistically indistinguishable between CCSM3.5
and GFDL CM2.1.

There is an offset in the confidence interval width fit, re-
lated to internal model physics; the intercept β0 above is
itself a function of run length. However, these variations
are relatively small; most importantly, the slope of the fit
is statistically constant, allowing one to predict the neces-
sary run time for any given level of self-agreement. For ex-
ample, to estimate the 90% confidence level for model self-
overlap, find the value of L in Equation 3 where Wim = 0.1
(log Wim = −2.3). This is roughly 250 years for CCSM and
CM2.1, indicating that 250 years is a good minimum base-
line for long ENSO simulations. More precise significance
levels for the differences between time series may be found
via hypothesis testing (Section 2.3). As a rule of thumb, if
the IJPDF distribution from subsamples of a time series is
too wide relative to Table 2 by a factor of 2, then one must
run the model an additional 80 years. Using β1 from Table
1, it is also possible to extrapolate to any arbitrary length L
to find the corresponding confidence interval, given β0 from
a shorter, calibration run.

Run compares well to CORE forcing hindcast

Model median

PDF of wavelet power spectrum

Variance (C2)
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Recipe for Testing ENSO
0. Pick a time series, any time series... I use NINO3.4 SST.

1. Form the probability distribution function of the wavelet 
power at each frequency

2. Calculate the amount of overlap using the “integrated 
joint PDF”

Result is between 0 and 1
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A New Method for Probabilistic ENSO Model Validation
Samantha Stevenson,1 Baylor Fox-Kemper,1 Markus Jochum,2, Balaji
Rajagopalan3 and Stephen G. Yeager1,2

Abstract. A method to quantify the statistical significance of changes in El Niño/Southern
Oscillation (ENSO) variability, using the integrated joint probability distribution func-
tion (IJPDF) of the wavelet spectrum, is presented. When subsets of a time series are
compared, the range of IJPDF values is found to have an exponential dependence on
the length of the subset used, with a statistically identical slope observed across climate
models. This dependence may be readily used to determine how long a model must be
run to obtain a given level of accuracy in ENSO representation. Examples using wavelet
probability analysis to compare the relative agreement of two models (CCSM3.5 and CM2.1)
with the historical NINO3.4 index, as well as measuring the effects of changes to CCSM
model parameters, are also presented. Implications for future tuning of coupled climate
models are discussed.

1. Introduction

Predicting changes to the El Niño/Southern Oscilla-
tion (ENSO) has worldwide societal implications, includ-
ing drought management in the American Southwest [Sea-
ger , 2007; Trenberth et al., 1998; Ropelewski and Halpert,
1996]. However, accurate prediction is limited by the short
extent of observations in the tropical Pacific [Guilyardi et al.,
2009]; both modeling [Wittenberg, 2009] and observational
[Meinen and McPhaden, 2000; McPhaden, 1999; Zhang and
McPhaden, 1995] studies agree that modulations in ENSO
dynamics occur on long timescales, meaning that longer
records are necessary to capture the full behavior of the sys-
tem. Paleoproxies are often used for this purpose, but their
use is often complicated by observational effects [McGregor
and Gagan, 2004; Brown et al., 2008].

Long coupled climate model integrations are presently
one of the few options for studying long-term ENSO vari-
ability. Coupled models suffer from some biases [Capotondi
et al., 2006], but the updated version of NCAR’s Community
Climate System Model (hereafter CCSM3.5) [Neale et al.,
2008] is much improved relative to the IPCC AR4-class
climate models. The inclusion of Convective Momentum
Transport (CMT) and the parameterization for convective
plume dilution of Zhang and McFarlane [1995] in the atmo-
spheric component of the model results in reduced model
bias in several ENSO-related variables [Neale et al., 2008].
Improvements also carry over into higher-resolution versions
of the model; here, the T31x3 CCSM3.5 is used, as it is rel-
atively inexpensive while still as accurate as any present
model.

This paper uses long integrations of the T31x3 CCSM3.5
to illustrate a new, wavelet-based probabilistic model val-
idation method, capable of overcoming the non-Gaussian
and temporally variable nature of ENSO statistics. Tradi-
tional tests (χ2 or Kolmogorov-Smirnov) are not naturally
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suited to this problem; however, this new procedure, based
on tools already in use by the ENSO community, can provide
quantitative statistical measures even for highly nonnormal
distributions of spectral power. This method is extremely
versatile: it may be used to predict the necessary length
for a model run (Section 2.1), to quantify agreement be-
tween a model and observations (Section 2.2), or to examine
the relative performance of multiple models compared
to observations (Section 2.3).

2. Wavelet Probability Analysis

The basis of this method is the use of the probability
distribution function (PDF) of the wavelet power. Here,
NINO3.4 SST from a 1200-year integration of the CCSM3.5,
hereafter ‘CCSMcontrol’, forms the primary dataset. CC-
SMcontrol is configured as in [Jochum, 2009] and validated
through comparison with the monthly gridded SST product
of Large and Yeager [2004a] (hereafter the CORE hindcast),
covering the period from 1949-2003 and chosen for conve-
nience, since it already conforms to the CCSM grid. Large
and Yeager [2004a] demonstrate its accuracy with respect
to the observational record; however, other data products
can easily be used as well.

Figure 1 shows the PDF of wavelet power, and demon-
strates that the CORE hindcast lies close to the median for
the model run: the model and data compare well. Some
offsets do remain at long periods, most likely due to er-
rors in CCSM3.5‘s representation of ENSO or other decadal
variability (i.e. the Pacific Decadal Oscillation). However,
unresolved errors may still be present due to undersampling
the true range of ENSO dynamics. This method allows us to
distinguish data/model offsets from what would be expected
due to natural variability.

Let f1(σ, ν) and f2(σ, ν) be two PDFs of wavelet power σ
at frequency ν. Then the joint probability distribution func-
tion F (σ, ν) is the probability that a given level of wavelet
power is observed in both datasets at frequency ν, and the
integral of F (σ, ν) then gives the total probability that the
two PDFs overlap. This is the integrated joint probability
distribution function, hereafter referred to as the IJPDF:

IJPDF (ν) =

∫ ∞

0

F (σ, ν)dσ =

∫ ∞

0

f1(σ, ν)f2(σ, ν)dσ(1)

where we have aassumed that the two wavelet PDFs f1
and f2 are independent. By definition, the IJPDF will lie

1

IJPDF at frequency ν

Wavelet power σ
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4. Hypothesis testing for consistency between time series

Recipe for Testing ENSO

Large overlap

Small overlap

3. Find confidence intervals using subsamples of the data

Range of 
IJPDFs will 
be derived:

90% confidence 
intervals: 

distance between 
5th, 95th 

percentiles of 
IJPDF dist.
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EXAMPLE 1: Model “Self-Overlap”

Take all possible subintervals 
of a given length

Compute IJPDF values for 
subintervals vs. entire run

90% confidence interval = 
distance between 5th, 95th 

percentiles

This forms its own distribution
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Figure 2. Left, center: 90% confidence interval on IJPDF distributions for self-overlap and model/data
calculations. Top left, center: CCSMcontrol. Bottom left, center: CM2.1. Right-hand panels show
regression of 90% confidence interval widths against subinterval length; CCSMcontrol data shown in red,
CM2.1 in blue. Top right: intramodel calculations; bottom right: data/model comparisons.

Table 2. IJPDF values for CCSMcontrol self-overlap cal-
culation as a function of subinterval length L at a variety of
confidence levels, averaged over the 2-6 year band.

L 2.5% 5% 10% 90% 95% 97.5%

50 0.5007 0.5098 0.5229 0.6296 0.6393 0.6478
100 0.6604 0.6646 0.6739 0.7433 0.7466 0.7484
200 0.8147 0.8156 0.8172 0.8384 0.8402 0.8415
400 0.9201 0.9203 0.9208 0.9262 0.9265 0.9269

Typical IJPDF ranges at different levels of confidence are
given in Table 2 as a function of subinterval length. These
values serve as guidelines for the expected self-agreement in
models of the specified lengths; as a general rule, if mea-
sured IJPDF values for an arbitrary model time series fall
within the tabulated confidence intervals, then the model
may be considered to perform ‘well’ at that significance level.
However, validation of any new version of a coupled climate
model (for example, models currently in development for
the IPCC AR5 report) against long integrations according
to their IJPDF distributions (Section 2.3) is recommended.

2.2. Validation Against Data

Wavelet probability analysis can also provide a measure
of the expected agreement between two time series gathered
from different sources (for example, a model and observa-
tions) as a function of their lengths. This helps prevent
‘overtuning’ models to a short observational record.

The middle panels of Figure 2 demonstrate the spread of
agreement with CORE for both CCSMcontrol and CM2.1.
Methods are identical to those of Section 2.1, except that
now the IJPDF values are derived from comparing the en-
tirety of the reference distribution (here, the CORE hind-
cast) to subintervals of various lengths taken from the com-
parison distribution (here, the CCSMcontrol integration).
Both models show agreement between 40-80% with CORE

below 5 years, and again at 12-15 years; CM2.1 does poorly
at representing 8-12 year variability.

The upper bound of the confidence interval on integrated
joint PDF never reaches 1 for the CCSMcontrol model/data
comparison. This therefore represents a real difference be-
tween the model and data record; additionally, the agree-
ment between CM2.1 and CORE is generally lower than
for CCSM. However, CM2.1 has historically been biased to-
ward overly strong ENSO activity [Wittenberg et al., 2006],
so these results are not surprising.

Table 3. IJPDF values for CCSMcontrol model/data calcu-
lation at a variety of confidence levels, averaged over the 2-8
year band.

Run length (yrs) 2.5% 5% 10% 90% 95% 97.5%

50 0.607 0.647 0.709 0.953 0.965 0.972
100 0.751 0.778 0.805 0.956 0.966 0.973
200 0.824 0.834 0.848 0.953 0.961 0.964
400 0.865 0.869 0.875 0.933 0.936 0.938

Note that for 50-year subintervals, the data/model and
model/model IJPDF confidence intervals overlap; 50-year
model runs are indistinguishable from the data. In contrast,
for intervals longer than 200 years, all self-overlap IJPDF
values are larger than the corresponding data/model IJPDF
values; this indicates that 50 year runs are not long enough
to distinguish the model from data, a result which will be
made more precise in the next section. In general, this anal-
ysis implies that rather than tuning as closely as possible to
observations, tuning the model until the spectrum lies in-
side of the range of acceptable agreement may be the most
appropriate method. This may be approximated using the
values in Table 3, as in Section 2.1.

2.3. Empirical Hypothesis Testing

50 yrs
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90% IJPDF confidence interval
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EXAMPLE 1: Model “Self-Overlap”

90% confidence interval gets smaller with “chunk” length

Dependence is ~exponential

FIT SLOPE IS IDENTICAL TO 90% CONFIDENCE!

Subinterval length (years) Subinterval length (years)

90% IJPDF confidence interval 90% IJPDF confidence interval
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1200 year CCSM3.5 run 2000 year GFDL CM2.1 run
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Why Test Model Self-Overlap?

1. Amount of overlap between “chunks” of a run and the full 
run is dependent on the “chunk” length

2. The dependence holds across models

3. This can be used to predict how long you should run any 
climate model for a given accuracy

for example: to get within 10% of “real” ENSO, run for at 
least 250 years

Monday, December 7, 2009



Construct two IJPDF distributions

Do confidence intervals overlap at significance α?
No: reject null (distributions differ)

Yes: do not reject null

Hypothesis Testing Procedure

Model Subintervals vs. Each Other

Model Subintervals vs. Data

Model/Model Model/Data

Data

IJPDF
0                                                                              1
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Why Hypothesis Testing?

1. Quantifies amount of agreement between model runs/
model and data, at any frequency

2. Minimum run length needed to measure statistically 
significant differences can be obtained

3. Accuracy of short model runs can be tested without 
running for a long time

4. Tuning can be performed as a function of frequency

Monday, December 7, 2009
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Figure 3. Results of hypothesis testing procedure. Left panels: validation of model runs against the
CORE hindcast; CCSMcontrol at top, RHLOW at middle, CM2.1 at bottom. Right panels: model/model
comparison. Top: CCSMcontrol vs. CM2.1; bottom: CCSMcontrol vs. RHLOW. In all panels, 0 indi-
cates model agreement and 1 model disagreement at 90% confidence.

The great power of this method is the ability to spec-
ify the significance level at which two time series disagree,
as a function of record length and frequency, allowing the
effects of changing model parameters to be precisely quan-
tified. This is done through measurement of the overlap
between IJPDF confidence intervals (i.e. Figure 2).

Empirical hypothesis testing is used in this analysis, since
using traditional methods to find the statistical significance
of overlap often yields misleading results. The IJPDF dis-
tributions of Sections 2.1 and 2.2 can be highly nonnormal,
and even the nonparametric Kolmogorov-Smirnov (K-S) test
will not necessarily give a representative result, since sam-
ples drawn from different distributions cannot be dismissed
without some a priori knowledge of the ‘correct’ distribu-
tion. Steps are as follows:

a. Determine the type of test to perform: model/model
or model/data.

b. Create the appropriate IJPDF distributions from sub-
sets of the input time series. For a model/data compari-
son, model self-overlap (Section 2.1) will be tested against
the model/data IJPDF distribution (Section 2.2). For a
model/model comparison, the two model/data distributions
will be compared.

c(1). To determine whether two distributions differ at sig-
nificance level α, compute the α

2 to 1− α
2 confidence intervals

on the two IJPDF distributions. If these intervals overlap,
the distributions are equivalent; otherwise, they differ.

c(2). To determine the level of confidence one may have in
differences between the distributions, repeat step c at many
different values of α. From this, find the largest α for which
the confidence intervals overlap, equivalent to locating the
smallest significance level at which the distributions differ.
Where αmax ≤ 0.1, for example, the null would be rejected
at the 90% level. In the limit of identical distributions, αmax

(minimum significance) approaches 1 (0); when there is no
overlap, αmax (minimum significance) approaches 0 (1).

The end result of applying steps a-c(1) is a map of the lo-
cations in parameter space where the two time series are the
same/different at confidence level α. If step c(2) is used in-
stead, a map of the confidence level at which the time series
differ results. This provides an immediate, visual depiction
of the effects of changing model parameters.

Model/data validation is performed on three runs: CC-
SMcontrol, the CM2.1 run discussed earlier, and an addi-
tional CCSM run using a lower value of the threshold rela-
tive humidity for cloud formation, hereafter ‘RHLOW’. To
prevent frequency ‘bleeding’ effects, the CORE hindcast is
compared only to model subintervals of the same length (in
this case, 55 years); this is therefore a test of how well the
agreement between CORE and 55-year model subintervals

compares to internal model variability. Results are found in
the left-hand panels of Figure 3; horizontal lines indicate dif-
ferences at the 80, 90 and 95% levels. CCSMcontrol agrees
relatively well with CORE from 2-6 year periods and for pe-
riods longer than 12 years, but not in the 6-12 year band.
RHLOW does somewhat better in the 6-12 year band, but
does not agree as well with CORE at long periods. Both
CCSM runs demonstrate better agreement with CORE in
the 2-8 year band than does CM2.1, but none of the models
perform well beyond 10 years.

Model/model validation is next performed, using two
pairs of model runs: CCSMcontrol/CM2.1 and CCSMcon-
trol/RHLOW. Results are shown in the right-hand panels
of Figure 3: CCSMcontrol and CM2.1 differ throughout the
4-10 year band, but only at long (≥ 200 year) subinterval
lengths. In contrast, for the CCSMcontrol/RHLOW com-
parison, long-period agreement is generally good, and the
areas of disagreement in the ENSO band are smaller than
for CCSMcontrol/CM2.1. Within the 2-8 year band, CCSM-
control and RHLOW disagree for subintervals longer than
200 years, and RHLOW shows better general agreement
with CORE for shorter periods. CCSMcontrol may there-
fore be considered less accurate for short-period ENSO. The
reverse is true for the 5-8 year band, where CCSMcontrol is
more consistent with CORE. Likewise for CCSMcontrol vs.
CM2.1, where CCSM shows better overall agreement with
data yet the models disagree with one another, this test
indicates that CCSMcontrol does a better job representing
ENSO variability.

The above test cases form ‘sanity checks’, in that chang-
ing model parameters affects the results less than using an
entirely different model. Also, an ‘intermediate’ comparison
case (not pictured) shows intermediate results: a test run
using the dynamic chlorophyll feedback of Jochum [2009]
shows differences from CCSMcontrol at the 85% significance
level throughout the ENSO band. We therefore anticipate
that this method will accurately represent true physical dif-
ferences between models.

3. Conclusions

Wavelet probability analysis is a robust method of mea-
suring agreement in ENSO variability between one or more
data sets. Using the PDF of the wavelet power, CCSM3.5 is
seen to agree extremely well with the ocean hindcast prod-
uct of Large and Yeager [2004a], lending credence to the use
of this model as a baseline for the study of long-term ENSO
variability.

Self-agreement depends strongly on the record length;
the self-overlap IJPDF confidence interval narrows expo-
nentially with the length of the model subinterval. Using

Hypothesis Testing Results
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Figure 3. Results of hypothesis testing procedure. Left panels: validation of model runs against the
CORE hindcast; CCSMcontrol at top, RHLOW at middle, CM2.1 at bottom. Right panels: model/model
comparison. Top: CCSMcontrol vs. CM2.1; bottom: CCSMcontrol vs. RHLOW. In all panels, 0 indi-
cates model agreement and 1 model disagreement at 90% confidence.

The great power of this method is the ability to spec-
ify the significance level at which two time series disagree,
as a function of record length and frequency, allowing the
effects of changing model parameters to be precisely quan-
tified. This is done through measurement of the overlap
between IJPDF confidence intervals (i.e. Figure 2).

Empirical hypothesis testing is used in this analysis, since
using traditional methods to find the statistical significance
of overlap often yields misleading results. The IJPDF dis-
tributions of Sections 2.1 and 2.2 can be highly nonnormal,
and even the nonparametric Kolmogorov-Smirnov (K-S) test
will not necessarily give a representative result, since sam-
ples drawn from different distributions cannot be dismissed
without some a priori knowledge of the ‘correct’ distribu-
tion. Steps are as follows:

a. Determine the type of test to perform: model/model
or model/data.

b. Create the appropriate IJPDF distributions from sub-
sets of the input time series. For a model/data compari-
son, model self-overlap (Section 2.1) will be tested against
the model/data IJPDF distribution (Section 2.2). For a
model/model comparison, the two model/data distributions
will be compared.

c(1). To determine whether two distributions differ at sig-
nificance level α, compute the α

2 to 1− α
2 confidence intervals

on the two IJPDF distributions. If these intervals overlap,
the distributions are equivalent; otherwise, they differ.

c(2). To determine the level of confidence one may have in
differences between the distributions, repeat step c at many
different values of α. From this, find the largest α for which
the confidence intervals overlap, equivalent to locating the
smallest significance level at which the distributions differ.
Where αmax ≤ 0.1, for example, the null would be rejected
at the 90% level. In the limit of identical distributions, αmax

(minimum significance) approaches 1 (0); when there is no
overlap, αmax (minimum significance) approaches 0 (1).

The end result of applying steps a-c(1) is a map of the lo-
cations in parameter space where the two time series are the
same/different at confidence level α. If step c(2) is used in-
stead, a map of the confidence level at which the time series
differ results. This provides an immediate, visual depiction
of the effects of changing model parameters.

Model/data validation is performed on three runs: CC-
SMcontrol, the CM2.1 run discussed earlier, and an addi-
tional CCSM run using a lower value of the threshold rela-
tive humidity for cloud formation, hereafter ‘RHLOW’. To
prevent frequency ‘bleeding’ effects, the CORE hindcast is
compared only to model subintervals of the same length (in
this case, 55 years); this is therefore a test of how well the
agreement between CORE and 55-year model subintervals

compares to internal model variability. Results are found in
the left-hand panels of Figure 3; horizontal lines indicate dif-
ferences at the 80, 90 and 95% levels. CCSMcontrol agrees
relatively well with CORE from 2-6 year periods and for pe-
riods longer than 12 years, but not in the 6-12 year band.
RHLOW does somewhat better in the 6-12 year band, but
does not agree as well with CORE at long periods. Both
CCSM runs demonstrate better agreement with CORE in
the 2-8 year band than does CM2.1, but none of the models
perform well beyond 10 years.

Model/model validation is next performed, using two
pairs of model runs: CCSMcontrol/CM2.1 and CCSMcon-
trol/RHLOW. Results are shown in the right-hand panels
of Figure 3: CCSMcontrol and CM2.1 differ throughout the
4-10 year band, but only at long (≥ 200 year) subinterval
lengths. In contrast, for the CCSMcontrol/RHLOW com-
parison, long-period agreement is generally good, and the
areas of disagreement in the ENSO band are smaller than
for CCSMcontrol/CM2.1. Within the 2-8 year band, CCSM-
control and RHLOW disagree for subintervals longer than
200 years, and RHLOW shows better general agreement
with CORE for shorter periods. CCSMcontrol may there-
fore be considered less accurate for short-period ENSO. The
reverse is true for the 5-8 year band, where CCSMcontrol is
more consistent with CORE. Likewise for CCSMcontrol vs.
CM2.1, where CCSM shows better overall agreement with
data yet the models disagree with one another, this test
indicates that CCSMcontrol does a better job representing
ENSO variability.

The above test cases form ‘sanity checks’, in that chang-
ing model parameters affects the results less than using an
entirely different model. Also, an ‘intermediate’ comparison
case (not pictured) shows intermediate results: a test run
using the dynamic chlorophyll feedback of Jochum [2009]
shows differences from CCSMcontrol at the 85% significance
level throughout the ENSO band. We therefore anticipate
that this method will accurately represent true physical dif-
ferences between models.

3. Conclusions

Wavelet probability analysis is a robust method of mea-
suring agreement in ENSO variability between one or more
data sets. Using the PDF of the wavelet power, CCSM3.5 is
seen to agree extremely well with the ocean hindcast prod-
uct of Large and Yeager [2004a], lending credence to the use
of this model as a baseline for the study of long-term ENSO
variability.

Self-agreement depends strongly on the record length;
the self-overlap IJPDF confidence interval narrows expo-
nentially with the length of the model subinterval. Using
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Figure 3. Results of hypothesis testing procedure. Left panels: validation of model runs against the
CORE hindcast; CCSMcontrol at top, RHLOW at middle, CM2.1 at bottom. Right panels: model/model
comparison. Top: CCSMcontrol vs. CM2.1; bottom: CCSMcontrol vs. RHLOW. In all panels, 0 indi-
cates model agreement and 1 model disagreement at 90% confidence.

The great power of this method is the ability to spec-
ify the significance level at which two time series disagree,
as a function of record length and frequency, allowing the
effects of changing model parameters to be precisely quan-
tified. This is done through measurement of the overlap
between IJPDF confidence intervals (i.e. Figure 2).

Empirical hypothesis testing is used in this analysis, since
using traditional methods to find the statistical significance
of overlap often yields misleading results. The IJPDF dis-
tributions of Sections 2.1 and 2.2 can be highly nonnormal,
and even the nonparametric Kolmogorov-Smirnov (K-S) test
will not necessarily give a representative result, since sam-
ples drawn from different distributions cannot be dismissed
without some a priori knowledge of the ‘correct’ distribu-
tion. Steps are as follows:

a. Determine the type of test to perform: model/model
or model/data.

b. Create the appropriate IJPDF distributions from sub-
sets of the input time series. For a model/data compari-
son, model self-overlap (Section 2.1) will be tested against
the model/data IJPDF distribution (Section 2.2). For a
model/model comparison, the two model/data distributions
will be compared.

c(1). To determine whether two distributions differ at sig-
nificance level α, compute the α

2 to 1− α
2 confidence intervals

on the two IJPDF distributions. If these intervals overlap,
the distributions are equivalent; otherwise, they differ.

c(2). To determine the level of confidence one may have in
differences between the distributions, repeat step c at many
different values of α. From this, find the largest α for which
the confidence intervals overlap, equivalent to locating the
smallest significance level at which the distributions differ.
Where αmax ≤ 0.1, for example, the null would be rejected
at the 90% level. In the limit of identical distributions, αmax

(minimum significance) approaches 1 (0); when there is no
overlap, αmax (minimum significance) approaches 0 (1).

The end result of applying steps a-c(1) is a map of the lo-
cations in parameter space where the two time series are the
same/different at confidence level α. If step c(2) is used in-
stead, a map of the confidence level at which the time series
differ results. This provides an immediate, visual depiction
of the effects of changing model parameters.

Model/data validation is performed on three runs: CC-
SMcontrol, the CM2.1 run discussed earlier, and an addi-
tional CCSM run using a lower value of the threshold rela-
tive humidity for cloud formation, hereafter ‘RHLOW’. To
prevent frequency ‘bleeding’ effects, the CORE hindcast is
compared only to model subintervals of the same length (in
this case, 55 years); this is therefore a test of how well the
agreement between CORE and 55-year model subintervals

compares to internal model variability. Results are found in
the left-hand panels of Figure 3; horizontal lines indicate dif-
ferences at the 80, 90 and 95% levels. CCSMcontrol agrees
relatively well with CORE from 2-6 year periods and for pe-
riods longer than 12 years, but not in the 6-12 year band.
RHLOW does somewhat better in the 6-12 year band, but
does not agree as well with CORE at long periods. Both
CCSM runs demonstrate better agreement with CORE in
the 2-8 year band than does CM2.1, but none of the models
perform well beyond 10 years.

Model/model validation is next performed, using two
pairs of model runs: CCSMcontrol/CM2.1 and CCSMcon-
trol/RHLOW. Results are shown in the right-hand panels
of Figure 3: CCSMcontrol and CM2.1 differ throughout the
4-10 year band, but only at long (≥ 200 year) subinterval
lengths. In contrast, for the CCSMcontrol/RHLOW com-
parison, long-period agreement is generally good, and the
areas of disagreement in the ENSO band are smaller than
for CCSMcontrol/CM2.1. Within the 2-8 year band, CCSM-
control and RHLOW disagree for subintervals longer than
200 years, and RHLOW shows better general agreement
with CORE for shorter periods. CCSMcontrol may there-
fore be considered less accurate for short-period ENSO. The
reverse is true for the 5-8 year band, where CCSMcontrol is
more consistent with CORE. Likewise for CCSMcontrol vs.
CM2.1, where CCSM shows better overall agreement with
data yet the models disagree with one another, this test
indicates that CCSMcontrol does a better job representing
ENSO variability.

The above test cases form ‘sanity checks’, in that chang-
ing model parameters affects the results less than using an
entirely different model. Also, an ‘intermediate’ comparison
case (not pictured) shows intermediate results: a test run
using the dynamic chlorophyll feedback of Jochum [2009]
shows differences from CCSMcontrol at the 85% significance
level throughout the ENSO band. We therefore anticipate
that this method will accurately represent true physical dif-
ferences between models.

3. Conclusions

Wavelet probability analysis is a robust method of mea-
suring agreement in ENSO variability between one or more
data sets. Using the PDF of the wavelet power, CCSM3.5 is
seen to agree extremely well with the ocean hindcast prod-
uct of Large and Yeager [2004a], lending credence to the use
of this model as a baseline for the study of long-term ENSO
variability.

Self-agreement depends strongly on the record length;
the self-overlap IJPDF confidence interval narrows expo-
nentially with the length of the model subinterval. Using

X - 4 STEVENSON ET AL.: PROBABILISTIC ENSO VALIDATION

! ! ! ! !

"#$

"#%

"#&

'

'
!!
!!
(
)
*

++,-+./0+123

!

!

"#&

"#4

"#45

! ! ! ! !

"#$

"#%

"#&

'

'
!!
!!
(
)
*

26/170+123

$ & '8 '% 8"

"#$

"#%

"#&

'

9:;<=>!?@:);AB

'
!!
!!
(
)
*

+-8#'0+123

/
!?
@
:
)
;A
B

!

!

$ & '8 '% 8"

'""

8""

C""

$""

"

"#8

"#$

"#%

"#&

'

9:;<=>!?@:);AB

/
!?
@
:
)
;A
B

!

!

$ & '8 '% 8"

'""

8""

C""

$""

"

"#8

"#$

"#%

"#&

'

Figure 3. Results of hypothesis testing procedure. Left panels: validation of model runs against the
CORE hindcast; CCSMcontrol at top, RHLOW at middle, CM2.1 at bottom. Right panels: model/model
comparison. Top: CCSMcontrol vs. CM2.1; bottom: CCSMcontrol vs. RHLOW. In all panels, 0 indi-
cates model agreement and 1 model disagreement at 90% confidence.

The great power of this method is the ability to spec-
ify the significance level at which two time series disagree,
as a function of record length and frequency, allowing the
effects of changing model parameters to be precisely quan-
tified. This is done through measurement of the overlap
between IJPDF confidence intervals (i.e. Figure 2).

Empirical hypothesis testing is used in this analysis, since
using traditional methods to find the statistical significance
of overlap often yields misleading results. The IJPDF dis-
tributions of Sections 2.1 and 2.2 can be highly nonnormal,
and even the nonparametric Kolmogorov-Smirnov (K-S) test
will not necessarily give a representative result, since sam-
ples drawn from different distributions cannot be dismissed
without some a priori knowledge of the ‘correct’ distribu-
tion. Steps are as follows:

a. Determine the type of test to perform: model/model
or model/data.

b. Create the appropriate IJPDF distributions from sub-
sets of the input time series. For a model/data compari-
son, model self-overlap (Section 2.1) will be tested against
the model/data IJPDF distribution (Section 2.2). For a
model/model comparison, the two model/data distributions
will be compared.

c(1). To determine whether two distributions differ at sig-
nificance level α, compute the α

2 to 1− α
2 confidence intervals

on the two IJPDF distributions. If these intervals overlap,
the distributions are equivalent; otherwise, they differ.

c(2). To determine the level of confidence one may have in
differences between the distributions, repeat step c at many
different values of α. From this, find the largest α for which
the confidence intervals overlap, equivalent to locating the
smallest significance level at which the distributions differ.
Where αmax ≤ 0.1, for example, the null would be rejected
at the 90% level. In the limit of identical distributions, αmax

(minimum significance) approaches 1 (0); when there is no
overlap, αmax (minimum significance) approaches 0 (1).

The end result of applying steps a-c(1) is a map of the lo-
cations in parameter space where the two time series are the
same/different at confidence level α. If step c(2) is used in-
stead, a map of the confidence level at which the time series
differ results. This provides an immediate, visual depiction
of the effects of changing model parameters.

Model/data validation is performed on three runs: CC-
SMcontrol, the CM2.1 run discussed earlier, and an addi-
tional CCSM run using a lower value of the threshold rela-
tive humidity for cloud formation, hereafter ‘RHLOW’. To
prevent frequency ‘bleeding’ effects, the CORE hindcast is
compared only to model subintervals of the same length (in
this case, 55 years); this is therefore a test of how well the
agreement between CORE and 55-year model subintervals

compares to internal model variability. Results are found in
the left-hand panels of Figure 3; horizontal lines indicate dif-
ferences at the 80, 90 and 95% levels. CCSMcontrol agrees
relatively well with CORE from 2-6 year periods and for pe-
riods longer than 12 years, but not in the 6-12 year band.
RHLOW does somewhat better in the 6-12 year band, but
does not agree as well with CORE at long periods. Both
CCSM runs demonstrate better agreement with CORE in
the 2-8 year band than does CM2.1, but none of the models
perform well beyond 10 years.

Model/model validation is next performed, using two
pairs of model runs: CCSMcontrol/CM2.1 and CCSMcon-
trol/RHLOW. Results are shown in the right-hand panels
of Figure 3: CCSMcontrol and CM2.1 differ throughout the
4-10 year band, but only at long (≥ 200 year) subinterval
lengths. In contrast, for the CCSMcontrol/RHLOW com-
parison, long-period agreement is generally good, and the
areas of disagreement in the ENSO band are smaller than
for CCSMcontrol/CM2.1. Within the 2-8 year band, CCSM-
control and RHLOW disagree for subintervals longer than
200 years, and RHLOW shows better general agreement
with CORE for shorter periods. CCSMcontrol may there-
fore be considered less accurate for short-period ENSO. The
reverse is true for the 5-8 year band, where CCSMcontrol is
more consistent with CORE. Likewise for CCSMcontrol vs.
CM2.1, where CCSM shows better overall agreement with
data yet the models disagree with one another, this test
indicates that CCSMcontrol does a better job representing
ENSO variability.

The above test cases form ‘sanity checks’, in that chang-
ing model parameters affects the results less than using an
entirely different model. Also, an ‘intermediate’ comparison
case (not pictured) shows intermediate results: a test run
using the dynamic chlorophyll feedback of Jochum [2009]
shows differences from CCSMcontrol at the 85% significance
level throughout the ENSO band. We therefore anticipate
that this method will accurately represent true physical dif-
ferences between models.

3. Conclusions

Wavelet probability analysis is a robust method of mea-
suring agreement in ENSO variability between one or more
data sets. Using the PDF of the wavelet power, CCSM3.5 is
seen to agree extremely well with the ocean hindcast prod-
uct of Large and Yeager [2004a], lending credence to the use
of this model as a baseline for the study of long-term ENSO
variability.

Self-agreement depends strongly on the record length;
the self-overlap IJPDF confidence interval narrows expo-
nentially with the length of the model subinterval. Using

1 - αmax: minimum significance at 
which two distributions differ

CCSM3.5: consistent with data at 
80-90% for most of ENSO band

CM2.1: differs from data at > 90%
for most of ENSO band

CCSM3.5 vs. CM2.1: differ at >90% in several bands. 
Agreement is a function of subinterval length 
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Conclusions

Statistically robust way to measure agreement between time series

Method is universal - any time series from any source

CCSM3.5 agrees with observations through most of the ENSO band

CCSM and CM do NOT agree in the 4-8 year band

Neither model performs well at long periods

Range of self-overlap falls off exponentially with length

Universal “scaling” relation, applies across models: at least 300-400 years needed
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