

High-resolution simulations using CAM (4 and 5)

Julio Bacmeister

With lots of help - will try to cite at appropriate places

Thanks to: Warren Washington, Jim Hack and DoE for computer time at ORNL

AMWG Meeting February 16, 2011

Outline

- 1) Rough description of "quarter degree" configurations
- 2) CAM4 and CAM5 resolution sensitivity (2 vs ¼ degree) -CAM4 clouds are more sensitive
- 3) Means, variability and statistics -Mixed bag
- 4) Precipitation loading effects -Seem to be important

High resolution 0.23x0.31 configurations

CAM4: *out-of-the-box*

CAM4-ice: Ice cloud radii dependence on T changed* ,** (with Cecile Hannay and Rich Neale)

CAM5 : fully prognostic aerosols

CAM5-BAM: using prescribed bulk aerosols. (2x speed-up) (thanks to Andrew Gettelman)

* r_e =25 μ for T<224K linear decrease to 10 μ at T=273K

** Used in 1989-2005 AMIP run and future time slice

Sensitivity to horizontal resolution (or time step?)

CAM 4 LWCF

Well tuned at 2 degree resolution. Drops sharply at 0.25 -- esp. in storm tracks (30% global decrease, *factor of two in midlatitudes*)

CAM 5 LWCF

Starts with more bias at 2 degree but Less sensitive to resolution in midlatitudes

CAM4 clouds tend to go away at high resolution.

Mid and high-level clouds decrease by a factor of two

CAM5 clouds are nearly insensitive to resolution

... small decrease in mid and high-levels

	LWCF (Wm-2)		SWCF (Wm-2)		CLDMED	
	2 deg	¼ deg	2 deg	¼ deg	2 deg	¼ deg
CAM4	30	21	-54	-43	19	11
CAM4-ice		29		-49		13
CAM5	22	18	-50	-50	26	22
CAM5-BAM		18		-52		25

Analysis of high frequency cloud output from CAM4 at T85 and T341

One month (January) of hourly instantaneous output

Thanks to John Truesdale and Julie Caron

Mean LWCF

Mean LWCF

Most of midlatitude decrease in LWCF takes place over cool oceans

Joint PDFs of cloud fraction and LWCF over cool ocean

*T*85

T341

Joint PDFs of cloud fraction and LWCF over cool ocean

*T*85

T341

Means, diurnal cycle, TCs

Precipitation patterns are relatively insensitive to resolution

CAM5 2°

CAM4 2°

CAM4 1/4 °

Precipitation patterns are relatively insensitive to resolution

Some improvement: SE US winter precip up, NE tropical Pacific down. (Orography?)

CAM5 2°

CAM4 2°

CAM4 1/4 °

Precipitation patterns are relatively insensitive to resolution

Some degradation – ITCZs intensified, more "doubled"

CAM5 2°

CAM4 2°

CAM4 1/4 °

Diurnal cycle of precip shows some improvement with resolution

Thanks to Rich Neale

TRMM 3B42 (0.25°)

2.5°

TRMM 3B42 (0.25°)

Large-scale rain dominates in cores of intense simulated cyclones

Large-scale, total convective, shallow convective rain

Precipitation Intensity Distributions and Extremes

17.0 14.0 12.0 10.0 9.0 8.0 7.0 6.0

> 4.0 3.0

2.0 1.0 0.5 0.2

0.0

mm d⁻¹

<20 mm d-1

Clobal mean=1.5

CAM5a February 2006

TRMM 3B42

<20 mm d-1

Global mean=0.25 mm d⁻¹

ALL

Global mean=2.27 mm d⁻¹

TRMM 3B42 February 2006

Instantaneous precipitation rates are related to instantaneous convergence

Pressure in a non-hydrostatic WRF experiment

Effects of condensate loading

(WRF results provided by Aiguo Dai)

15-min average precipitation rate (Hong and Lim 2006 microphysics)

Dashed lines show 50x50 gp (25km x 25km) squares used to coarse grain WRF fields to produce "high-res AGCM" fields

Hydrostatic Balance w/ and w/out condensate loading

$$\pi_{hyd} = \int_{z}^{z_{top}} \frac{g}{c_p \Theta_{\{v,cond\}}} dz' + \pi_{top}$$
$$p_{hyd} = p_{00} \pi_{hyd}^{1/\kappa}$$

w/out loading:

$$\Theta_{v} = \Theta(1.+0.61q)$$

1

with loading:

$$\Theta_{cond} = \Theta \left(1.+0.61q - q_{liq} - q_{ice} - q_{rain} - q_{graup} - q_{snow} \right)$$

Net loading at surface (in Pa) as a function of surface precipitation rate

Annual mean precipitation

CAM5 control

w/ parameterized precipitation loading

Bad news: TC number also decreases

Summary

CAM5 clouds somewhat less sensitive to resolution. CAM4 counterintuitively produces more fractions ~1 at low resolution than at high resolution.

In terms of climate means and statistics, impact of high resolution is mixed.

-some biases worsen, e.g., Pacific ITCZs

-some improve: SE US precip, diurnal cycles in some regions

Summary (cont.)

-Encouraging tropical cyclone climatologies and structures with CAM5 at 0.23x0.31 (Note: large-scale rain rather than convective appears to dominate tropical cyclone dynamics)

-Extreme precipitation (>500 mm d⁻¹ at 25² km²) events are probably too common. Parameterized condensate loading seems to help

→ Climate models at high-resolution may not be able to postpone adding consistent prognostic precipitation, including pressure effects

More important than adding non-hydrostatic effects.

"Middling" precip (5-20 mm d⁻¹) is also too common – *directly* produced by convective parameterization(s)

Future Work

Add correct condensate loading along with prognostic precipitation to CAM (might need extra convective treatment)

Longer CAM5 integrations (with prescribed MAM?)

Compare CAM4 and CAM5 TC climatologies

THANK YOU

The NESL Mission is: To advance understanding of weather, climate, atmospheric composition and processes; To provide facility support to the wider community; and, To apply the results to benefit society.

NCAR is sponsored by the National Science Foundation

272.0 334.0 192.0 160.0 12 144.0 128.0 112.0 96.0 80.0 64.Ð 48.0 32.0 16.0 8.0 3.20.0 Б 10 15 Ð. Ι

Coarsened 15-min precip rate (mm d⁻¹)

Coarsened WRF surface P (hPa)

Hydrostatic surface P (hPa) – loaded

Hydrostatic surface P (hPa) – NO loading

Diagnosed hydrostatic surface pressure with and without condensate loading vs. coarse grained WRF surface pressure

Condensate loading matters – even in (25 km)² grid boxes

Net loading at surface (in Pa) as a function of surface precipitation rate

Parameterized precipitation loading

surface precip rate \Re_{surf} used to diagnose precipitating condensate density ρ_{prec}

> 7000 m $\rho_{\rm prec}$

for z < 7000m

$$\rho_{prec}(x, y, z, t) = \frac{\Re_{surf}(x, y, t)}{W_{fall}}$$

$$p_{prec}(x, y, z, t) = \int_{z}^{7000m} g\rho_{prec} dz'$$

Extra condensate pressure is added to "real" model pressure right before horizontal gradients are calculated, then removed