Scientific Aspects of the Climate UQ Project @ LLNL

Donald D. Lucas + Climate & UQ Teams

Discussion Topics

- Overview of climate UQ project and methods
- Parameter sensitivity update
- Filtering UQ ensembles through observations
- Future directions (UQ simulations and observations)

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Lawrence Livermore National Laboratory

Climate and UQ Teams

"The Advance of UQ Science with Applications to Climate Modeling, Inertial Confinement Fusion (ICF), and Stockpile Stewardship (SSS)," A three-year Laboratory Directed Research & Development Strategic Initiative

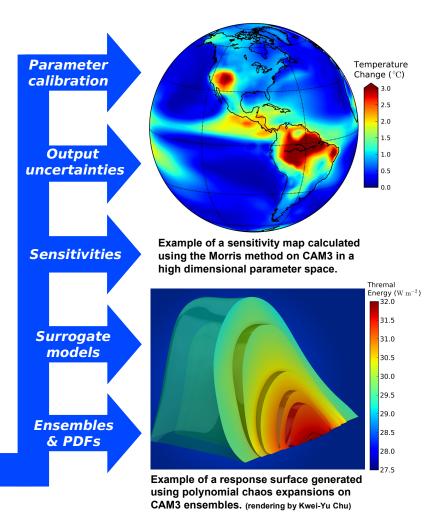
- Project Leads
 - Richard Klein (PI)
 - Xabier Garaizar (co-PI)

Climate Team

- Curt Covey (climate lead)
- Donald Lucas (modeling and analysis)
- John Tannahill (software architecture and development)
- Yuying Zhang (observations and analysis)
- UQ and Computation Teams
 - David Domyancic, Scott Brandon (LLNL UQ Pipeline)
 - Gardar Johannesson (curse of dimensionality, adaptive sampling)
 - And others

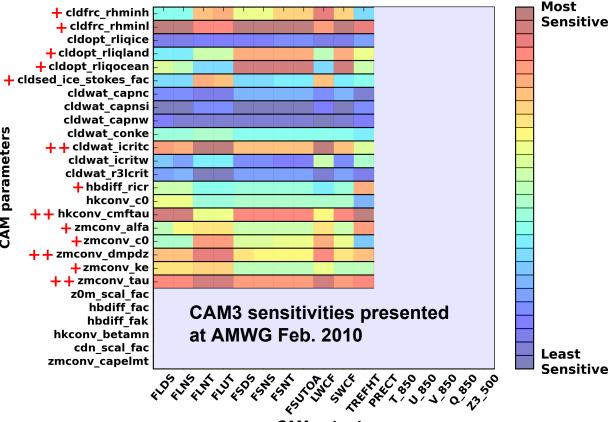
Overview of Climate UQ @ LLNL

- Adaptively build an ensemble of climate simulations for present-day climate by perturbing uncertain input parameters of the Community Atmospheric Model (CAM)
- Carry out sensitivity and uncertainty analysis of the climate simulations
- Collect a comprehensive set of observations to use for UQ (emphasis on cloud-related observations)
- Calibrate input parameters using observations
- Calculate PDF of climate sensitivity
- Perform UQ analysis of climate change using coupled models and adaptive sampling refinement in LLNL's UQ Pipeline



Update on CAM4 parameter sensitivities

- Multiple global sensitivity methods were applied to CAM. These methods are global in parameter space, accounting for nonlinear parameter interactions.
- Global sensitivity measures are used to identify important parameters and categorize linear and nonlinear effects.
- Highly ranked parameters are targets for calibration.
- A sensitivity ranking for CAM4 using the Σ Morris screening method is shown on the right [Morris, Technometrics (1991)].
 - 27 parameters are ranked across 17 outputs
 - A handful of parameters are important to many outputs (++)
 - Many parameters are important to at least one output (+)

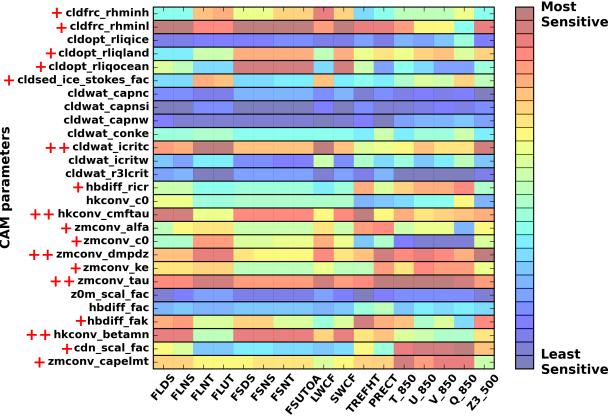


MOAT Sensitivity Ranking

CAM outputs

Update on CAM4 parameter sensitivities

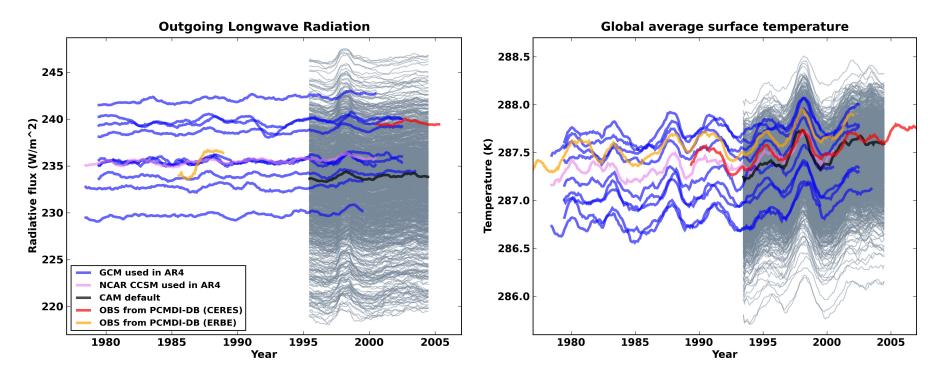
- Multiple global sensitivity methods were applied to CAM. These methods are global in parameter space, accounting for nonlinear parameter interactions.
- Global sensitivity measures are used to identify important parameters and categorize linear and nonlinear effects.
- Highly ranked parameters are targets for calibration.
- A sensitivity ranking for CAM4 using the Morris screening method is shown on the right [Morris, Technometrics (1991)].
 - 27 parameters are ranked across 17 outputs
 - A handful of parameters are important to many outputs (++)
 - Many parameters are important to at least one output (+)



MOAT Sensitivity Ranking

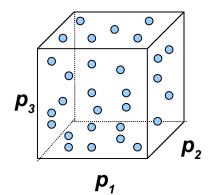
CAM outputs

Examples of Unfiltered Ensembles



- Unfiltered ensembles consider only the prior parameter uncertainties
- *Filtering* is the process of constraining the ensembles with observations
- Having a large unfiltered ensemble spread facilitates the filtering process
 - (i.e. it's easier to interpolate than extrapolate!)

Climate UQ Machinery



• = CAM AMIP simulations at sample points

(LHS & MOAT sampling)

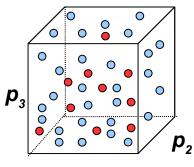
Hypercube Analysis

(global sensitivities, unfiltered uncertainties)

$$R = f(p_1, p_2, p_3, ...)$$

Surrogate Models

- Gaussian process models
- Polynomial chaos expansions
- Support Vector Regression
- Multivariate Adaptive Regression Splines (MARS)



 = Surrogate predictions at new sample points

Observational constraint filter

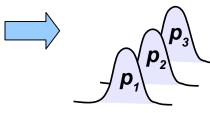
Filtering Methods

Maximum likelihood
 parameter estimation

- Statistical filtering
 - sample R using LHS
 - calculate likelihoods
- Bayesian calibration

Filtering Analysis

(parameter PDFs, response PDFs)



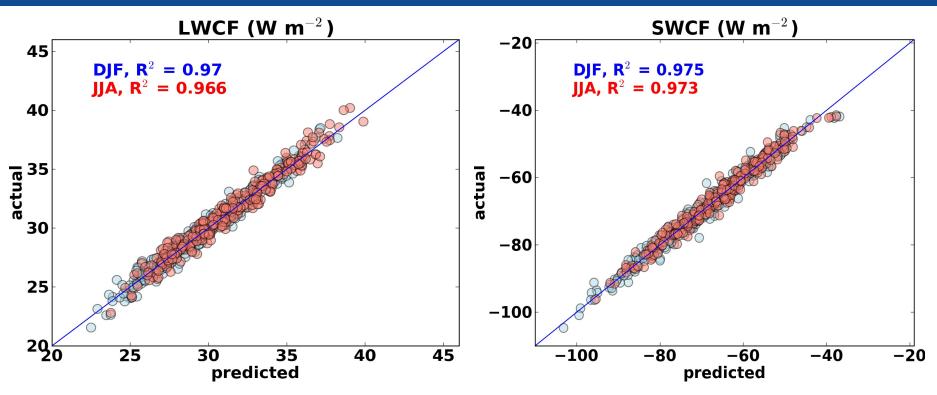
Uncertainty Propagation

PDFs of present day climate quantities of interest

PDFs of future climate quantities of interest (*climate sensitivity*)

LLNL-PRES-470077

Independent Validation of Surrogate Models



- Surrogate models are validated using independent data.
- Examples of the actual and predicted LWCF and SWCF responses are displayed above.
 - surrogates were derived using Support Vector Regression trained on over 1,000
 CAM4 runs and tested on 300 independent runs.
- Surrogate model errors can be important and should be factored in the UQ analysis.

Goal: determine "unknown" parameter values in default version of CAM4 using climate "observations"

Step 1: Used output fields generated from *CAM4 default* as the target "observations" (*CAM4 default* = oat7, run0001)

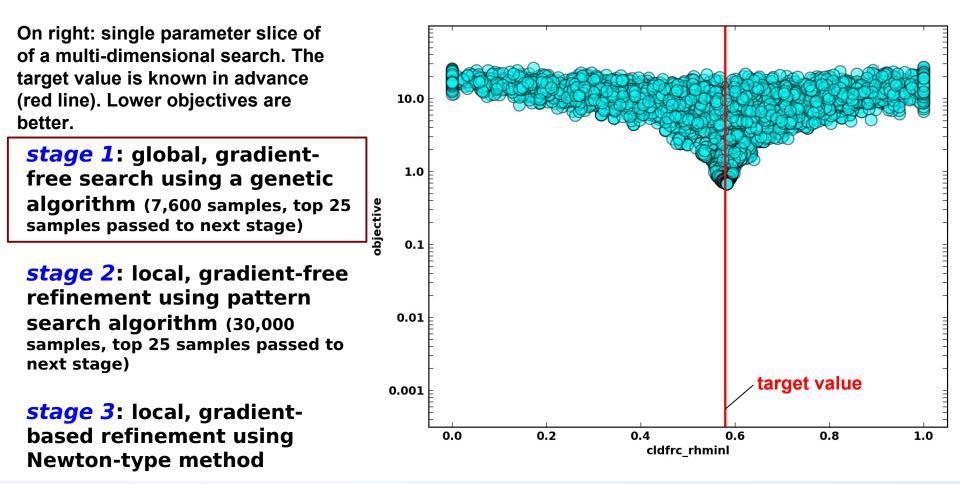
Step 2: Used output fields generated from over 1,300 other CAM4 runs to build and validate surrogate models (mainly LHS runs)

- + Built 18 surrogates using SVM regression (CLDTOT, FLUT, FSUTOA, PRECT, LWCF, T_850, TREFHT, SWCF, and Z3_500; DJF and JJA global averages)
- + Five-fold cross validation used to tune SVM-R hyperparameters ($R^2 > 0.9$, # SV's ~ ¹/₄ training data size)
- + Held out 300 runs for independent validation (previous slide)

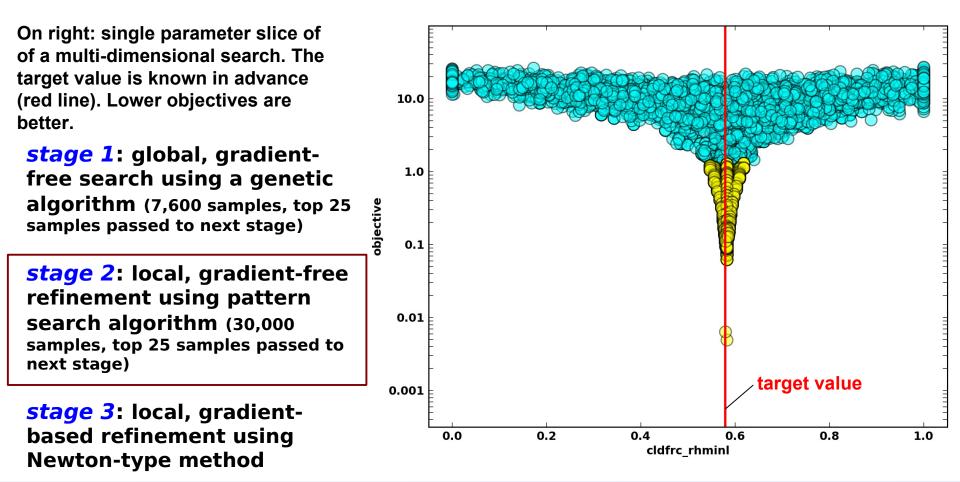
Step 3: Used inexpensive surrogates to search the parameter space for optimal match with "observations"

Cast as a bound-constrained optimization problem minimize: {f₁(p), f₂(p), ...}, $p \in \mathbb{R}^n$, f_i = |mod_i - obs_i|/scale subject to: $p_L \le p \le p_U$

Use multi-stage hybrid sequential optimization



Use multi-stage hybrid sequential optimization



Use multi-stage hybrid sequential optimization

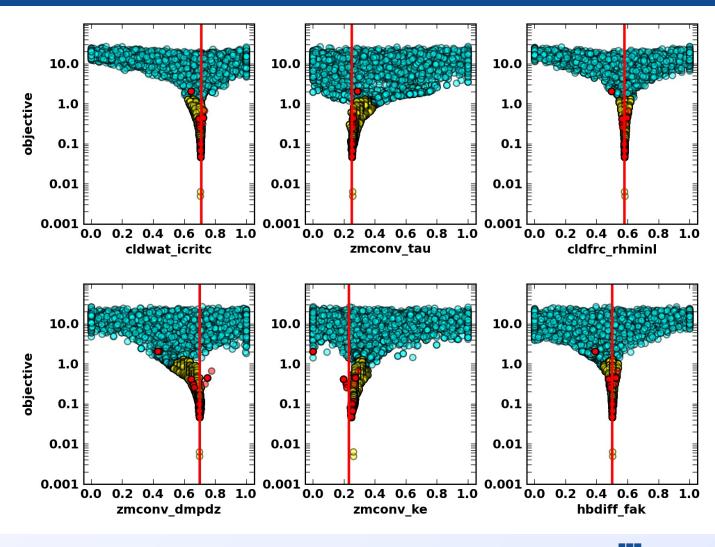
On right: single parameter slice of of a multi-dimensional search. The target value is known in advance 10.0 (red line). Lower objectives are better. stage 1: global, gradient-1.0 free search using a genetic algorithm (7,600 samples, top 25 bjective samples passed to next stage) 0.1 stage 2: local, gradient-free refinement using pattern 0.01 search algorithm (30,000 samples, top 25 samples passed to next stage) target value 0.001 stage 3: local, gradientbased refinement using 0.2 0.0 0.4 0.6 0.8 1.0 cldfrc_rhminl Newton-type method

• Surrogate-based optimization estimates maximum likelihood values for multiple parameters.

• Cheap to execute (runs on a workstation).

• Can be used to refine the search space for high dimensional systems.

 Need to add model and data uncertainties for UQ. Optimization Under Uncertainty (OUU) provides a framework for doing this.



Statistical Filtering Example (analysis by S. Brandon)

Approach used by PI's V&V group.

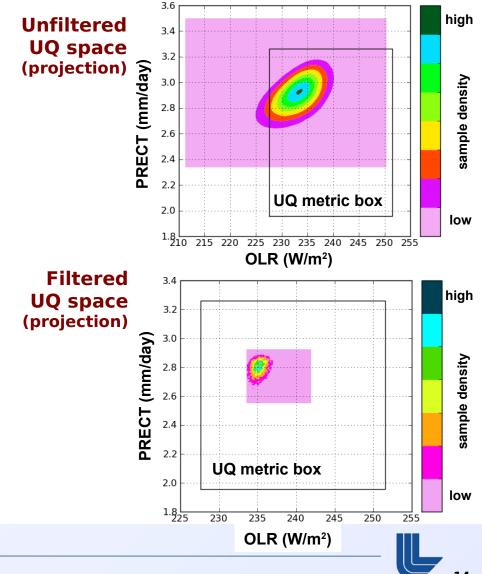
Trained and validated 24 MARS surrogate models on ~1,300 LHS CAM4 simulations: [FLUT, FSUTOA, LWCF, PRECT, Q_850, SWCF, T_850, Z3_500] x [ANN, DJF, JJA]

Observational constraints (w/ "loose" uncertainties): CERES (FLUT, LWCF, SWCF), GPCP (PRECT), NCEP (Z3_500)

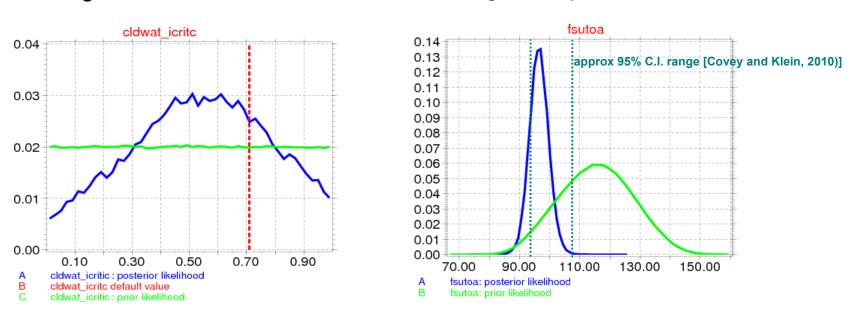
Brute-force sampling (LHS) of MARS surrogates to generate likelihoods.

Likelihoods computed with various filters (e.g. top-hat (1 or 0) or Gaussian).

Application of the filters collapses the UQ space; about 10% of the samples satisfy the filters.



Statistical Filtering Example (analysis by S. Brandon)



Marginal Response Likelihood

Marginal Parameter Likelihood

- · Most parameters are not constrained very much by the "loose" filter assumptions
- Posterior PDFs generated by normalizing the likelihoods
- FSUTOA is constrained even though an observational constraint for FSUTOA is not applied

Bayesian Calibration Example (analysis by G. Johannesson)

Sample joint posterior distribution given prior information (uniform PDFs) and observational constraints (likelihoods).

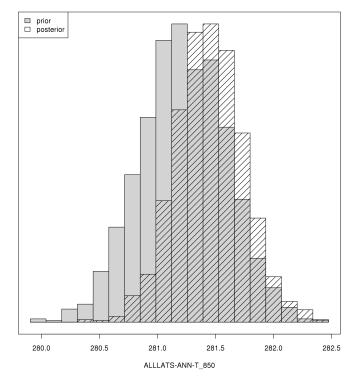
Trained and validated 24 Gaussian Process surrogate models on ~1,300 LHS CAM4 simulations: [FLUT, FSUTOA, LWCF, PRECT, Q_850, SWCF, T_850, Z3_500] x [ANN, DJF, JJA]

Observational constraints (w/ "loose" uncertainties): CERES (FLUT, LWCF, SWCF), GPCP (PRECT), NCEP (Z3_500)

Use a hierarchical Bayesian model OBS = SYS + OBS_err SYS = CAM4(p) + MOD_err CAM4(p) = SURR(p) + SURR_err

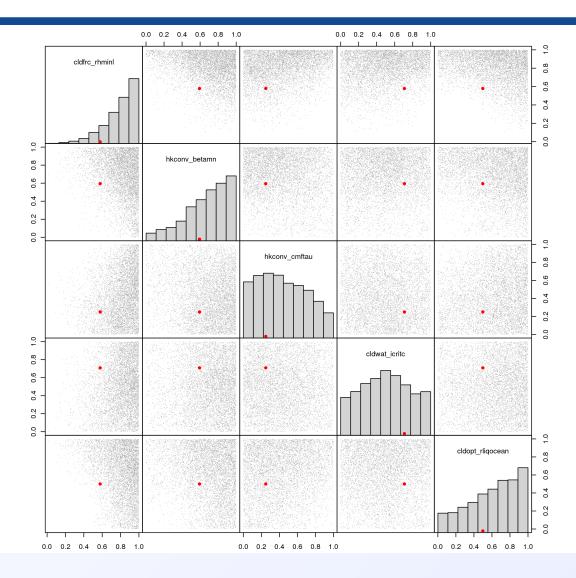
MCMC used to sample the joint posterior distribution.

P(params | obs) ∝ P(obs | params) P(params)posteriorlikelihoodflat priors



Above: prior and posterior PDFs for a response to which observational constraints were not applied

Bayesian Calibration Example (analysis by G. Johannesson)



Posterior Parameter PDF

Diagonal shows the marginal posterior distribution of 5 selected input parameters (those most constrained by the observations)

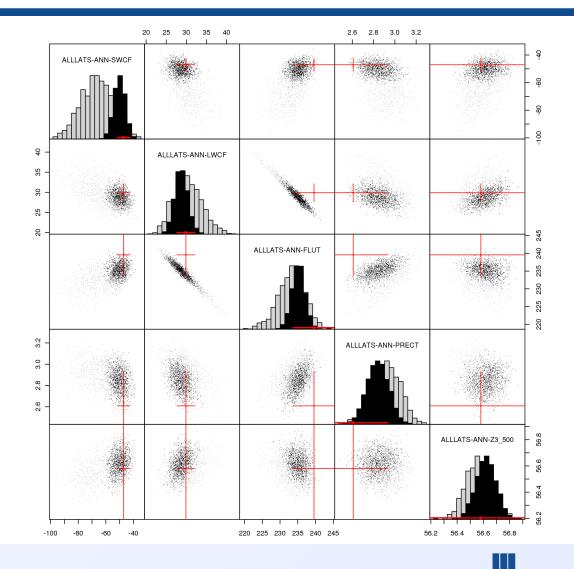
Off-diagonal shows posterior realizations (dots) from the bivariate distributions

Red dots show the default values

Bayesian Calibration Example (analysis by G. Johannesson)

Posterior distribution of selected output variables

- Diagonal (marginal)
 - light-gray histograms show the prior (unfiltered) distributions
 - black histogram the posterior (filtered) distributions
 - red dots/bars show the observational constraints
- Off-diagonal (bivariate)
 - light-gray scatter plots show prior distributions
 - black scatter plots show posterior distributions
 - along with observations and error bars



Summary and Next Steps

• We have developed and demonstrated techniques for performing full UQ analysis on CAM using:

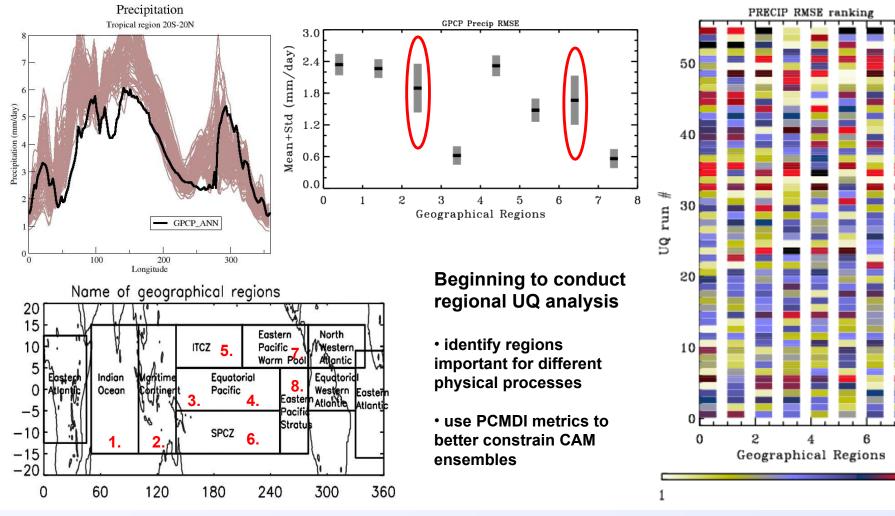
- surrogate models as inexpensive proxies for CAM
- multiple methods for combining observations and ensembles
- Calibrating CAM depends critically on the observations and metrics used to filter UQ ensembles.
 - Using surrogate models provides an efficient way to quantify the assumptions made during ensemble filtering. (e.g. What observations should we use? How should we combine the data and ensembles?)
- Right now, we are performing:
 - exploratory UQ studies of CAM + CICE + SOM
 - extensive calibration studies with the CAM AMIP ensembles

• Soon we will combine the above for forward UQ propagation for equilibrium climate sensitivity

Extra slides from YZ

LLNL-PRES-470077

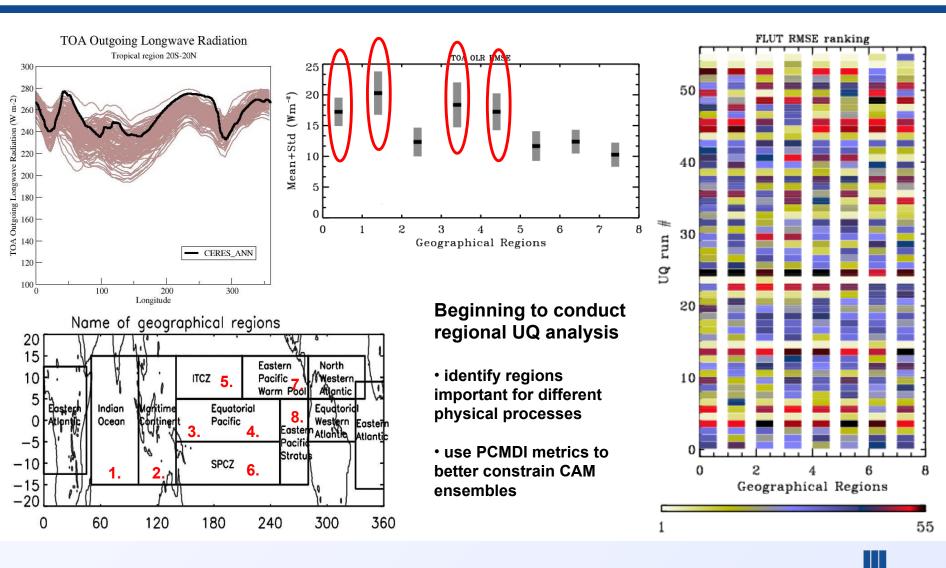
Regional Analysis of Tropical Precipitation



8

55

Regional Analysis of Tropical OLR



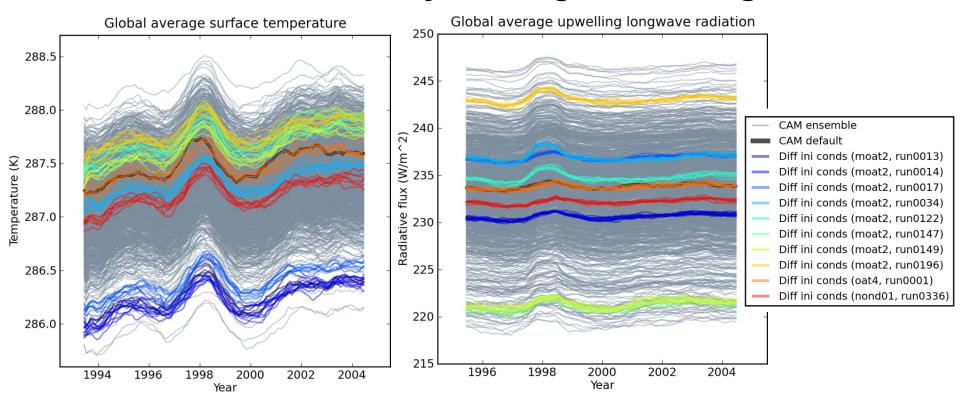
22

Extra slides for Node 587

LLNL-PRES-470077

Initial Condition Study (uq_ics01, prenode 587)

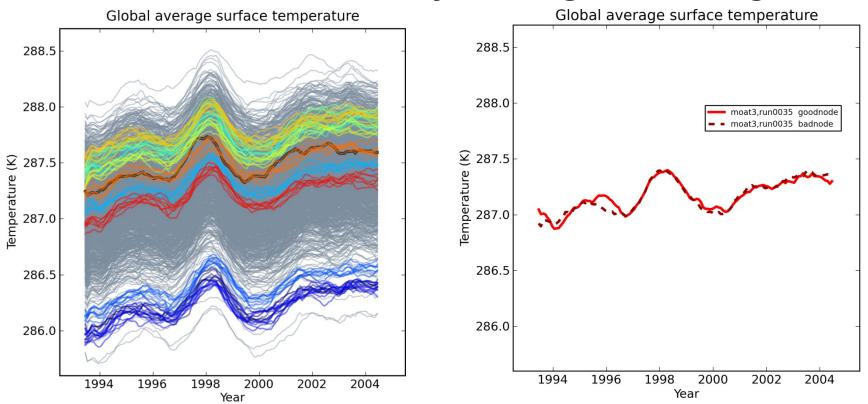
Time series of monthly mean, global averages



- · Initial condition variations are substantially smaller than parameter variations
- · Initial condition variability does not increase with time

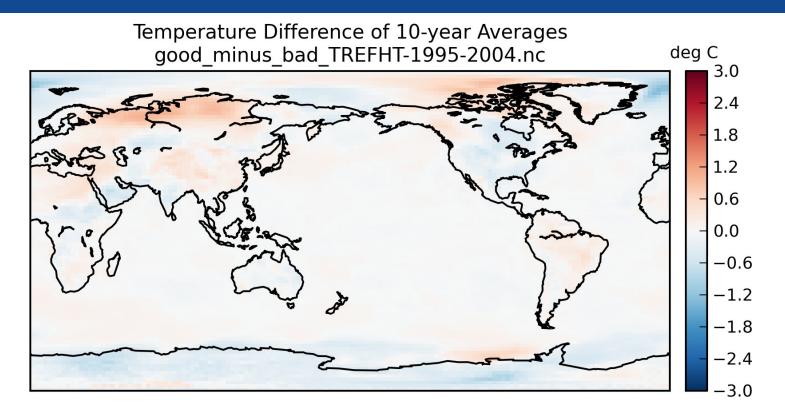
Node 587 – Changes in time

Time series of monthly mean, global averages



- Node 587 difference is substantially smaller than parameter variations
- Node 587 difference does not increase with time

Node 587 - Changes in space



- Extreme values of +1 deg C and -1 deg C
- Centered at 0 deg C
- Global average is approximately zero (consistent with previous slide, even though the order of averaging operations is different)

Compiler Optimization Study (uq prec03)

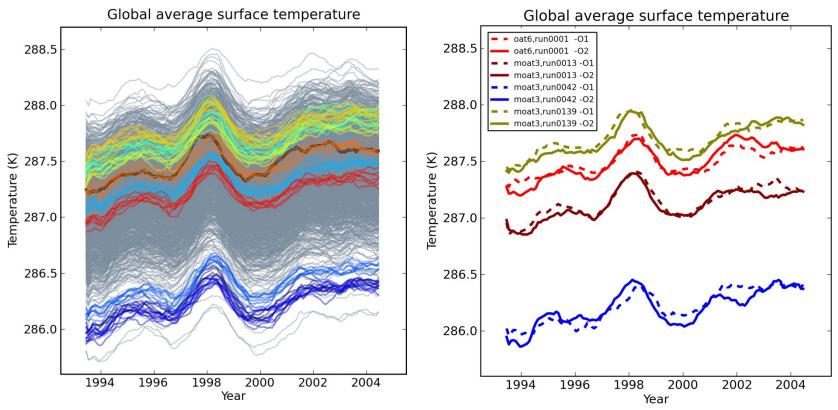
- CAM was compiled with the pgi compiler at two optimization levels (-01) and -02)
- Four cases were selected
 - oat6 run0001, moat3 run0013, moat3 run0042, moat3 run0139
 - Did not match cases used in uq ics01 study because different versions of CAM and different numbers of parameters were used

Case	Optimization	Run
oat6, run0001	-01	1
moat3, run0013	-01	2
moat3, run0042	-01	3
moat3, run0139	-01	4
oat6, run0001	-02	5
moat3, run0013	-02	6
moat3, run0042	-02	7
moat3, run0139	-02	8

- 1. Sensitivity to optimization changes: R6 - R2, R7 - R3, **R8 – R4**
- 2. Sensitivity to parameter changes: R5 - R6, R5 - R7, **R5 – R8**

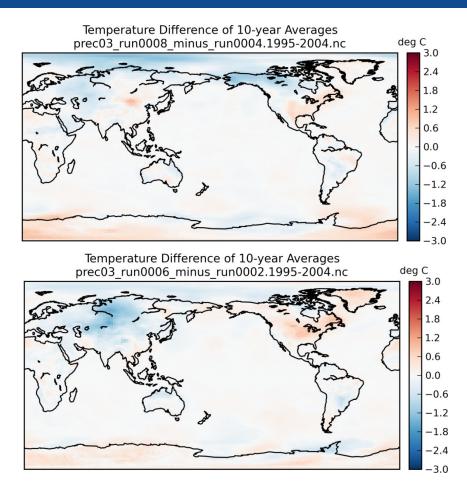
Compiler Optimization Study (uq_prec03)

Time series of monthly mean, global averages



- · Optimization differences are substantially smaller than parameter variations
- Optimization differences do not increase with time
- Optimization differences are on par with initial condition differences

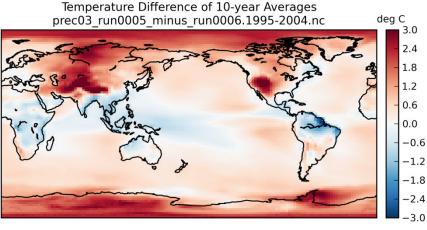
Compiler Optimization Study (uq_prec03)



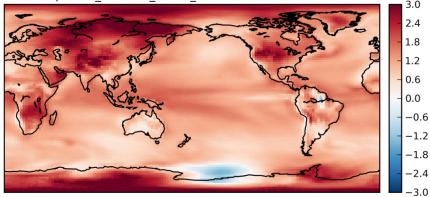
Temperature Difference of 10-year Averages prec03_run0007_minus_run0003.1995-2004.nc deg C 3.0 2.4 1.8 1.2 0.6 0.0 -0.6 -1.2 -1.8 -2.4 -3.0

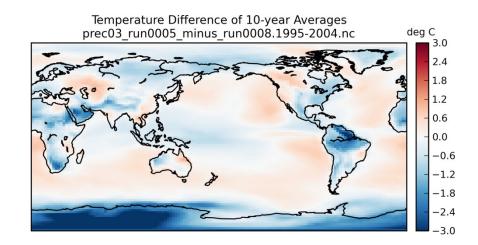
- 1. Sensitivity to optimization changes: R6 – R2, R7 – R3, R8 – R4
- 2. Sensitivity to parameter changes: R5 – R6, R5 – R7, R5 – R8
- Qualitatively similar to Node 587 differences (extreme values of about +/- 1 deg C, centered at 0 deg C, global average is approximately zero)

Compiler Optimization Study (uq_prec03)



Temperature Difference of 10-year Averages prec03 run0005 minus run0007.1995-2004.nc





- Sensitivity to optimization changes: R6 – R2, R7 – R3, R8 – R4
- 2. Sensitivity to parameter changes: R5 – R6, R5 – R7, R5 – R8

• Not similar to Node 587 and Optimization differences (larger extreme values, global average is not approximately zero)

deg C

