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Discussion Topics

• Overview of climate UQ project and methods

• Parameter sensitivity update 

• Filtering UQ ensembles through observations

• Future directions (UQ simulations and observations) 
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Climate and UQ Teams

 Project Leads
 Richard Klein (PI)
 Xabier Garaizar (co-PI)

 Climate Team
 Curt Covey (climate lead)
 Donald Lucas (modeling and analysis)
 John Tannahill (software architecture and development)
 Yuying Zhang (observations and analysis)

 UQ and Computation Teams
 David Domyancic, Scott Brandon (LLNL UQ Pipeline)
 Gardar Johannesson (curse of dimensionality, adaptive sampling)
 And others

“The Advance of UQ Science with Applications to Climate 
Modeling, Inertial Confinement Fusion (ICF), and Stockpile 
Stewardship (SSS),” A three-year Laboratory Directed Research 
& Development Strategic Initiative
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LLNL UQ PipelineLLNL UQ Pipeline
UQ technology

Self-guiding, self-adapting
Model input 
uncertainties

Surrogate 
models

Parameter 
calibration

Ensembles 
& PDFs

Sensitivities

Output 
uncertainties

Example of a sensitivity map calculated 
using the Morris method on CAM3 in a 
high dimensional parameter space.

Example of a response surface generated 
using polynomial chaos expansions on 
CAM3 ensembles. (rendering by Kwei-Yu Chu)

 Adaptively build an ensemble of climate 
simulations for present-day climate by 
perturbing uncertain input parameters of 
the Community Atmospheric Model (CAM)

 Carry out sensitivity and uncertainty 
analysis of the climate simulations

 Collect a comprehensive set of 
observations to use for UQ (emphasis on 
cloud-related observations)

 Calibrate input parameters using 
observations

 Calculate PDF of climate sensitivity
 Perform UQ analysis of climate change 

using coupled models and adaptive 
sampling refinement in LLNL's UQ Pipeline

Overview of Climate UQ @ LLNL
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Update on CAM4 parameter sensitivities

• Multiple global sensitivity methods were 
applied to CAM. These methods are 
global in parameter space, accounting 
for nonlinear parameter interactions.

• Global sensitivity measures are used to 
identify important parameters and 
categorize linear and nonlinear effects.

• Highly ranked parameters are targets 
for calibration.

• A sensitivity ranking for CAM4 using the 
Morris screening method is shown on 
the right [Morris, Technometrics (1991)].

• 27 parameters are ranked across 
17 outputs

• A handful of parameters are 
important to many outputs (++)

• Many parameters are important to 
at least one output (+)
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CAM3 sensitivities presented 
at AMWG Feb. 2010
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Examples of Unfiltered Ensembles

•  Unfiltered ensembles consider only the prior parameter uncertainties

•  Filtering is the process of constraining the ensembles with observations

•  Having a large unfiltered ensemble spread facilitates the filtering process 

  (i.e. it's easier to interpolate than extrapolate!)
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Climate UQ Machinery

CAM AMIP simulations 
at sample points
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= = Surrogate predictions 
at new sample points

Hypercube Analysis

Surrogate Models 

Observational 
constraint filter

(global sensitivities, unfiltered uncertainties)

Filtering Analysis
(parameter PDFs, response PDFs)

Filtering Methods
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Uncertainty Propagation

PDFs of present day climate 
quantities of interest

PDFs of future climate 
quantities of interest 
(climate sensitivity)

(LHS & MOAT sampling)

• Maximum likelihood 
parameter estimation
• Statistical filtering 
–  sample R using LHS
–  calculate likelihoods

• Bayesian calibration

• Gaussian process models
• Polynomial chaos expansions
• Support Vector Regression
• Multivariate Adaptive Regression 
  Splines (MARS)
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Independent Validation of Surrogate Models

•  Surrogate models are validated using independent data.
•  Examples of the actual and predicted LWCF and SWCF responses are displayed above.

– surrogates were derived using Support Vector Regression trained on over 1,000 
CAM4 runs and tested on 300 independent runs.

•  Surrogate model errors can be important and should be factored in the UQ analysis.
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Estimating CAM4 Parameters Using 
Surrogate-Based Optimization

Goal: determine “unknown” parameter values in default version of 
CAM4 using climate “observations”

Step 1: Used output fields generated from CAM4 default as the target 
“observations” (CAM4 default = oat7, run0001) 

Step 2: Used output fields generated from over 1,300 other CAM4 runs to 
build and validate surrogate models (mainly LHS runs)

+ Built 18 surrogates using SVM regression (CLDTOT, FLUT, FSUTOA, PRECT, 
           LWCF, T_850, TREFHT, SWCF, and Z3_500; DJF and JJA global averages) 

+ Five-fold cross validation used to tune SVM-R hyperparameters 
    (R2 > 0.9, # SV's ~ ¼ training data size)
+ Held out 300 runs for independent validation (previous slide)

Step 3: Used inexpensive surrogates to search the parameter space for 
optimal match with “observations” 

Cast as a bound-constrained optimization problem
          minimize:  {f1(p), f2(p), …}, p ℝn,  fi = |modi - obsi|/scale
          subject to:  pL  p  pU
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Use multi-stage hybrid sequential optimization

stage 1: global, gradient-
free search using a genetic 
algorithm (7,600 samples, top 25 
samples passed to next stage)

stage 2: local, gradient-free 
refinement using pattern 
search algorithm (30,000 
samples, top 25 samples passed to 
next stage)

stage 3: local, gradient-
based refinement using 
Newton-type method

Estimating CAM4 Parameters Using 
Surrogate-Based Optimization

target value

On right: single parameter slice of 
of a multi-dimensional search. The 
target value is known in advance 
(red line). Lower objectives are 
better.
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Estimating CAM4 Parameters Using 
Surrogate-Based Optimization

• Surrogate-based 
optimization estimates 
maximum likelihood 
values for multiple 
parameters.

• Cheap to execute 
(runs on a workstation).

• Can be used to refine 
the search space for 
high dimensional 
systems.

• Need to add model 
and data uncertainties 
for UQ. Optimization 
Under Uncertainty 
(OUU) provides a 
framework for doing 
this.
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Statistical Filtering Example (analysis by S. Brandon)
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UQ metric box

UQ metric box

Approach used by PI's V&V group.

Trained and validated 24 MARS surrogate 
models on ~1,300 LHS CAM4 simulations: 
[FLUT, FSUTOA, LWCF, PRECT, Q_850, SWCF, 
T_850, Z3_500] x [ANN, DJF, JJA]

Observational constraints (w/ “loose” 
uncertainties): CERES (FLUT, LWCF, SWCF), 
GPCP (PRECT), NCEP (Z3_500)

Brute-force sampling (LHS) of MARS 
surrogates to generate likelihoods.

Likelihoods computed with various filters    
(e.g. top-hat (1 or 0) or Gaussian).

Application of the filters collapses the UQ 
space; about 10% of the samples satisfy the 
filters.

Unfiltered
UQ space

(projection)
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Marginal Parameter Likelihood Marginal Response Likelihood

•  Most parameters are not constrained very much by the “loose” filter assumptions

•  Posterior PDFs generated by normalizing the likelihoods

•  FSUTOA is constrained even though an observational constraint for FSUTOA is not applied

approx 95% C.I. range [Covey and Klein, 2010)]

Statistical Filtering Example (analysis by S. Brandon)
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Bayesian Calibration Example (analysis by G. Johannesson)

Sample joint posterior distribution given 
prior information (uniform PDFs) and 
observational constraints (likelihoods). 

Trained and validated 24 Gaussian Process 
surrogate models on ~1,300 LHS CAM4 
simulations: [FLUT, FSUTOA, LWCF, PRECT, 
Q_850, SWCF, T_850, Z3_500] x [ANN, DJF, JJA]

Observational constraints (w/ “loose” 
uncertainties): CERES (FLUT, LWCF, SWCF), 
GPCP (PRECT), NCEP (Z3_500)

Use a hierarchical Bayesian model
    OBS  =  SYS  +  OBS_err
    SYS  =  CAM4(p)  +  MOD_err
    CAM4(p)  =  SURR(p)  +  SURR_err

MCMC used to sample the joint posterior 
distribution.

Above: prior and posterior PDFs for a response to 
which observational constraints were not applied

P(params | obs)   P(obs | params) P(params)

flat priorslikelihoodposterior
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Bayesian Calibration Example (analysis by G. Johannesson)

Posterior Parameter PDF

Diagonal shows the 
marginal posterior 
distribution of 5 selected 
input parameters (those 
most constrained by the 
observations) 

Off-diagonal shows 
posterior realizations 
(dots) from the bivariate 
distributions

Red dots show the 
default values
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Bayesian Calibration Example (analysis by G. Johannesson)

Posterior distribution of selected 
output variables

 Diagonal (marginal)
 light-gray histograms show the 

prior (unfiltered) distributions 
 black histogram the posterior 

(filtered) distributions
 red dots/bars show the 

observational constraints

 Off-diagonal (bivariate)
 light-gray scatter plots show 

prior distributions
 black scatter plots show 

posterior distributions
 along with observations and 

error bars
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Summary and Next Steps

• We have developed and demonstrated techniques for performing full UQ 
analysis on CAM using:

– surrogate models as inexpensive proxies for CAM

– multiple methods for combining observations and ensembles

• Calibrating CAM depends critically on the observations and metrics used to 
filter UQ ensembles.

– Using surrogate models provides an efficient way to quantify the assumptions 
made during ensemble filtering. (e.g. What observations should we use? How 
should we combine the data and ensembles?) 

• Right now, we are performing:
– exploratory UQ studies of CAM + CICE + SOM

– extensive calibration studies with the CAM AMIP ensembles

• Soon we will combine the above for forward UQ propagation for equilibrium 
climate sensitivity
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E xt ra  sli des f r om YZ
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Regional Analysis of Tropical Precipitation

1. 2.

5.

6.

7.

8.
3. 4.

Beginning to conduct 
regional UQ analysis
 
• identify regions 
important for different 
physical processes 
 
• use PCMDI metrics to 
better constrain CAM 
ensembles
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Regional Analysis of Tropical OLR

1. 2.

5.

6.

7.

8.
3. 4.

Beginning to conduct 
regional UQ analysis
 
• identify regions 
important for different 
physical processes 
 
• use PCMDI metrics to 
better constrain CAM 
ensembles
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E xt ra  sli des f or  Node  58 7
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Initial Condition Study (uq_ics01, pre-
node 587)

Time series of monthly mean, global averages

•  Initial condition variations are substantially smaller than parameter variations
•  Initial condition variability does not increase with time
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Node 587 – Changes in time

Time series of monthly mean, global averages

•  Node 587 difference is substantially smaller than parameter variations
•  Node 587 difference does not increase with time
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Node 587 – Changes in space

•  Extreme values of +1 deg C and -1 deg C
•  Centered at 0 deg C  
•  Global average is approximately zero (consistent with previous slide, even though the 
order of averaging operations is different)
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Compiler Optimization Study (uq_prec03)

•  CAM was compiled with the pgi compiler at two optimization levels (-O1 
and -O2)
•  Four cases were selected 

• oat6_run0001, moat3_run0013, moat3_run0042, moat3_run0139
•  Did not match cases used in uq_ics01 study because different 
versions of CAM and different numbers of parameters were used

1. Sensitivity to optimization 
changes: R6 – R2, R7 – R3, 
R8 – R4

2. Sensitivity to parameter 
changes: R5 – R6, R5 – R7, 
R5 – R8
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Compiler Optimization Study (uq_prec03)

Time series of monthly mean, global averages

•  Optimization differences are substantially smaller than parameter variations
•  Optimization differences do not increase with time
•  Optimization differences are on par with initial condition differences
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Compiler Optimization Study (uq_prec03)

•  Qualitatively similar to Node 587 differences (extreme values of  about +/- 1 deg C, 
centered at 0 deg C, global average is approximately zero)

1. Sensitivity to optimization 
changes: R6 – R2, R7 – R3, 
R8 – R4

2. Sensitivity to parameter 
changes: R5 – R6, R5 – R7, 
R5 – R8
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Compiler Optimization Study (uq_prec03)

•  Not similar to Node 587 and Optimization differences (larger extreme values, global 
average is not approximately zero)

1. Sensitivity to optimization 
changes: R6 – R2, R7 – R3, 
R8 – R4

2. Sensitivity to parameter 
changes: R5 – R6, R5 – R7, 
R5 – R8
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