

The Effects of Turbulent Mountain Stress (TMS) on the Boundary Layer in CAM

Gunilla Svensson and Jenny Lindvall

Department of Meteorology and the Bert Bolin Centre for Climate Research, Stockholm University, Sweden

Cecile Hannay and Sungsu Park, NCAR

Diurnal cycle in CAM4 and CAM5

- Aim is to compare the two very different PBL schemes
- CAM4 and CAM5 5-year climatological SST simulations
- Coupled to the land model which is the same in both simulations
- We analyse hourly output at locations with observations of turbulent fluxes

Flux stations used in the study

Annual cycle

Diurnal cycle

Stockholm University

Observed and simulated median monthly diurnal cycles

CLM and CAM interactions

CAM4

- CLM calculates turbulence fluxes at the surface
- Used as boundary conditions for the PBL scheme
- Same stability functions in CLM as in PBL scheme

CAM5

- CLM calculates turbulence fluxes at the surface
- TMS adds surface stress in CAM, thus a larger surface stress is used as boundary condition
- This extra drag reduces the wind speed in lowest layer
- Not the same stability functions in CLM, PBL and TMS

Turbulent Mountain Stress (TMS)

- Added to improve the general circulation
- Enhancement of the surface drag due to subgridscale terrain, basically increases surface rougness to z_{0_oro}
- Applied when Ri < 1 based on function below

Subgrid scale orography

Variable SGH30 in USGS-gtopo30 1.9x2.5 remap c050419.nc used in CAM5

At SGP:

SGH30=23 m

Calculated z_{0_oro}

At SGP: $z_{0_{oro}} = 1.7m$

 $z_0 = 0.06 \text{ m}$

Neutral drag law

Applied to the Southern Great Plains where $z_0=0.06 \text{ m}$ $z_{0_oro}=1.7 \text{ m}$ $u_{*CAM} \rightarrow U_{ref} \rightarrow u_{*CLM}$

Neutral drag coefficient for SGP

Wind speed is reduced...

Temperature gradients increase

Effect of turbulent mountain drag

NIS TRAC

TIVIS		INO TIVIS		I IVIS		INO TIVIS	
Near surface wind	m/s	Near surface wind	m/s	Near surface wind	m/s Near surface wind	m/s	
MIN = 0.04 MAX = 7.97	0 11 12	MIN = 0.02 MAX =	11.68 8 9 10 11 12	MIN = 0.11 MAX	= 11.81 MIN = 0.21 MAX = 1 7 8 9 10 1112 0.5 1 1.5 2 2.5 3 4 5 6 7 8	9 10 11 12	

camdev23_cam3_6_28_u117_tms - camdev23_cam3_6_28_u117

Summary

- The Turbulent Mountain Stress is needed for CAM5 to have "enough" momentum extracted at the surface
- Climatolological surface turbulent heat fluxes are similar in CAM4 and CAM5 even though the winds are much reduced in CAM5
- The model compensates the lower wind gradients with larger temperature gradients
- A more sophisticated parameterisation that does not intefere with the surface driven turbulence is preferable
- Problematic since there are no observational datasets to compare with...