Ocean carbon sink dynamics in CESM1

Matthew Long

Climate and Global Dynamics Division

17 March 2011

The ocean carbon sink

- The ocean has absorbed \sim 50% of fossil fuel CO₂ to date.
- What is the fidelity of CESM1's ocean carbon cycle representation?
- What are the dominant mechanisms generating variability in the ocean carbon sink?

Ocean carbon system

Dissolved inorganic carbon

 $DIC = [CO_2] + [HCO_3^-] + [CO_3^{2-}]$

 pCO_2^{sw}

$$p\mathrm{CO}_2 = \frac{[\mathrm{CO}_2]}{K_0(T,S)}$$

Alkalinity

 $\begin{aligned} Alk &= [\mathsf{HCO}_3^-] + 2[\mathsf{CO}_3^{2-}] + [\mathsf{OH}^-] \\ &- [\mathsf{H}^+] + [\mathsf{B}(\mathsf{OH})_4^-] + \mathsf{minor} \; \mathsf{bases} \end{aligned}$

z,

Gas exchange depends on surface boundary condition

Sarmiento & Gruber 2006

Air-sea exchange:

$$J_{ex} = (1 - A_{ice})k\gamma \left(p \text{CO}_2^{stm} - p \text{CO}_2^{sw}
ight)$$

where k = piston velocity (empirical), and $\gamma = \text{solubility}, f(T, S)$

Numerical experiments Fully coupled run (BDRD)*:

[cdp]: CO_2^{atm} options c = constant, [1850 value] d = diagnostic (specified), [1850 value, historical record, RCP trajectory] p = prognostic, [zero emissions, historical emissions, RCP emissions]

Hindcast ocean-ice spin-up and forcing

60 year repeating CORE forcing

Physical fields & dynamical tracers reinitialized at each cycle.

Hindcast ocean-ice spin-up and forcing

Global mean fields in hindcast transient

Validation datasets

3D fields

GLobal Ocean Analysis Project (GLODAP)

Surface

► Takahashi et al. [2009] *p*CO₂

McNeil et al. [2007] Southern Oc. C

Accounting for model drift Change in DIC inventories in 1850-bdrd

*p*CO^{*sw*}₂ spatial structure about right, positively biased Annual mean

Biases		
	$\Delta(mean)$	RMS error
Hindcast:	1.4%	17.0 μ atm
Coupled:	0.9%	18.8 μ atm

Seasonal Variability in pCO_2^{sw} : thermal & biological effects

Takahashi

Seasonal variability in pCO_2^{sw}

Magnitude comparable to spatial variability in annual mean.

Mechanisms:

 $\rightarrow \Delta SST$ $\rightarrow \Delta DIC$, ΔAlk (biology)

Thermal effect computed using:

$$\Delta \rho \text{CO}_2^{sum} = \rho \text{CO}_2^{win} \exp[0.0433(T^{sum} - T^{win}) - 4.35 \times 10^{-5} ((T^{sum})^2 - (T^{win})^2)]$$

Biological component computed as residual.

 $\begin{aligned} \text{Summer} &= \mathsf{JFM} \text{ (south) and JAS (north)} \\ \text{Winer} &= \mathsf{JAS} \text{ (south) and JFM (north)} \end{aligned}$

Seasonal Variability in pCO_2^{sw} : thermal & biological effects

Results: Surface fields

Dissolved inorganic carbon

Biases		
	$\Delta(mean)$	RMS error
Hindcast:	-0.6%	$22.9 \text{ mmol } \text{m}^{-3}$
Coupled:	-1.9%	43.0 mmol m^{-3}

Alkalinity

Biases		
	$\Delta(mean)$	RMS error
Hindcast:	-1.4%	28.1 mmol m^{-3}
Coupled:	-2.8%	55.0 mmol m^{-3}

DIC is largely underestimated by CESM1

Coupled, bDrD, years 1990-2000

... but pCO_2 is overestimated, except near the continent

Coupled, bDrD, years 1990-2000

Does alkalinity underestimation cause pCO_2 biases?

Coupled, bDrD, years 1990-2000

DIC:Alk ratio controls pCO_2^{sw}

At DIC = 2150 $\mu \rm{mol}~\rm{kg}^{-1}$ and Alk = 2280 $\mu \rm{mol}~\rm{kg}^{-1}$

$$\frac{\partial p \text{CO}_2}{\partial \text{DIC}} \approx +2.8 \ \mu \text{atm}$$
$$\frac{\partial p \text{CO}_2}{\partial \text{Alk}} \approx -2.6 \ \mu \text{atm}$$

Results: Surface fields

Zonal distributions of CO_2 flux

Different flux estimates show largest discrepancies in Southern Oc.

Gruber et al. 2009

Results: Surface fields

Zonal distributions of CO_2 flux

Zonal distributions of CO₂ flux

Models show large range of variability in Southern Oc. fluxes; a component of this is related model physics and variation in intermediate, deep, and bottom water formation.

Gruber et al. 2009

Anthropogenic CO₂ and CFC uptake biases, CCSM3

- Overall structure similar to observations; but
- Low biases in the Southern Ocean: Weak Antarctic intermediate and mode water formation?
- CFC pattern indicates too strong ventilation along Antarctic margin;
 N. Atlantic deep convection too far south—and/or SST biases.

Thornton et al. 2009

CESM1 anthropogenic CO₂ inventories

Inventories

GLODAP:	118 ± 19 Pg C	$(\pm 16\%)$
Hindcast:	88.1 Pg C	(25% low)
Coupled:	90.3 Pg C	(23% low)

CO₂ uptake too weak in both forced and coupled runs

CFC-11 uptake in forced and coupled runs

*Inventories exclude Arctic

Regional trends in air-sea CO₂ flux

Regional trends in air-sea CO₂ flux

Regional trends in air-sea CO₂ flux

Summary

Getting carbon uptake right requires accurate representation of both

- 1. surface processes affecting air-sea exchange; and
- 2. physical subduction and transport.
- Spatial and temporal variability in pCO₂^{sw} compares favorably with observations; model pCO₂^{sw} is too high compared to observations, alkalinity cycling may play a role.
- Anthropogenic CO₂ uptake is improved relative to CCSM3; although weak uptake persists and the structure of biases is similar: high latitude regions remain problematic.
- Dramatic 20th century changes in regional sink performance are not evident in the model.