Ozone pollution (events) in the
GFDL AM3 chemistry-climate model
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Summertime surface O; changes in a warmer climate in the
new GFDL chemistry-climate model (AM3) [Donner et al., 2011]

Prototype version of AM3: full strat and trop (gas+aerosol) chem plus idealized tracers.

20-year simulations with annually-invariant present-day emissions of ozone and
aerosol precursors [Fang et al., submitted to JGR]

Present Day Simulation (“1990s”): observed SSTs + sea ice (1981-2000 mean)

Future Simulation (“Al1B 2090s”):. observed SSTs + sea ice + average
2081-2100 changes from 19 IPCC AR-4 models
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Previously noted decrease of lower troposphere background O,
e.g., Johnson et al., GRL, 2001; Stevenson et al., JGR, 2006



Changes in pollution events:
Incidences of daily max 8-hr O; > 75 ppb (land only)

FUTURE: A individual years ==20-yr mean (climate change only)
PRESENT: @ individual years ==20-yr mean
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Pollution events, Present and Future (Climate change only):
Ozone vs. idealized tracers
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- Shapes of present-day distributions vary by tracer and region

- Changes in distributions (especially high extremes) differ
Y. Fang



Idealized tracers (cheaper than full

chemistry!) may offer

Insights into how pollution responds to shifts in climate
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Y. Fang

Correlation (r) of regional

' Average daily values

with 500 hPa geopotential
heights in present-day simulations

Similar patterns emerge.

- Correlation analysis
between idealized tracers
and meteorological fields
useful for identifying
meteorological factors
controlling build-up of
pollution (and how those
change in the future)



High-resolution version of GFDL AM3
global climate-chemistry model

Surface O4 at 2010-05-20_13:00:00

Nudged to Global Forecasting
System U and V

Up-to-date emissions

-US NEI 2005

-Asia INTEX-B scaled to 2010
-Daily resolved fire emissions

1-year coarse-res spin up with
and without Asian (15-50N, 95-
160E) anthropogenic emissions

High-res run for Jan-Jul 2010
(NOAA CalNex field campaign)

M. Lin et al., in prep.



AMS3 captures daily variability at sonde locations &
structure of stratospheric intrusions along U.S. west coast

PointReyes [122.9W, 38.1N]
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STE event associated with simulated and observed
surface O; enhancements, May 28-29 2010

Trop. column O, (DU) AM3 surface O, (ppb) ~ Observed O, (ppb)
AQS + CASTNet

Suggestive of STE influence at surface; needs further examination
with strat O; tracer and “background” simulations

M. Lin et al., in prep



The role of Asian Emissions on

Ozone Exceedances in Southern California

Apr-Jun 201 ) 15 . Mean Asian Ozone
S T at ~800hPa in May 2010
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Daily max 8-hr Ozone (ppbv) the absence of Asian
emissions

M. Lin, AGU Fall Meeting, Dec 2010



ppb per C

How well does a global chemistry-climate model simulate
regional Oj-temperature relationships?

NORTHEAST USA:

monthly average daily max 8-hr avg (MDAS8 O,)
vs. monthly avg. daily max. T

AM3 model: 1981-2000
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How large a contribution are temperature biases in
chemistry-climate models to surface O; biases?

A) Use 2 independent datasets to assess bias in daily max temperature
B) Assume 4 ppb per C in Jun-Aug & 3 ppb per C in Sep applies throughout EUS

Maurer et al. 2002
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—~>May be a significant contribution in Aug/Sep, possibly Jul, not Jun
—> Additional factors still at play in model bias, but illustrates critical need

for accurate representation of daily T max (diurnal cycle) _
D. Rasmussen Jr. et al., in prep
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