Climate Change and Air Quality in US National Parks: a new project sponsered by NPS

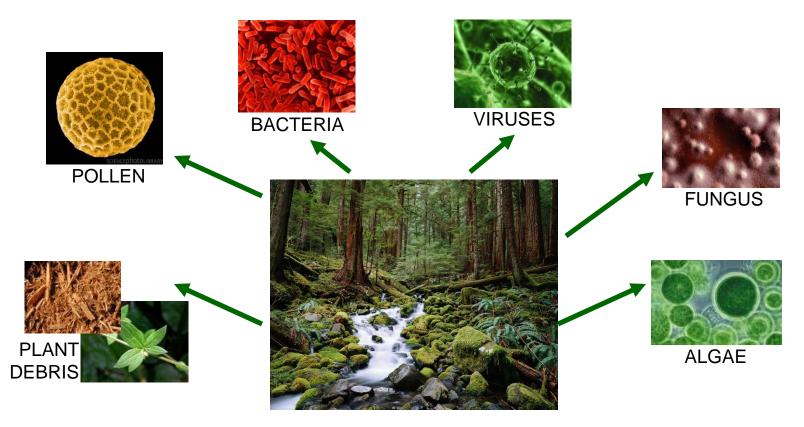
Maria Val Martin Colette L. Heald Colorado State University

Chemistry Climate Working Group March 16-17, 2011

PROJECT OBJECTIVES

Quantify the contributions from:

- 1. Anthropogenic emission changes
- 2. Natural emission changes (BVOC, dust, BB)
- 3. Climate Change
- 4. Land use change (RCP scenarios, possibly CN, not DGVM)


Also investigate the role of resolution: do some hi-res runs (1x1) with trop chemistry

RCP EMISSIONS SPECIATED FOR USE IN CESM

(example for year 2000)

	RCP45	CAM	
BC	5.15	4.67	"Standard" emissions = POET
BIGALK	120.21	223.67	Stanuaru eniissions – POET
BIGENE	4.85	7.16	
С10Н16			
С2Н2	3.29	3.45	
С2Н4	7.73	6.73	
С2Н5ОН	2.84	5.38	
С2Н6	3.34	7.56	
СЗН6	3.46	2.78	
СЗН8	3.86	8.07	
CH2O	3.18	0.96	
СНЗСНО	1.23	2.14	
CH3CN	0.89	0.72	
СНЗСОСНЗ	1.10	0.30	
СНЗСООН	5.09	6.63	
СНЗОН	1.97	0.42	
со	609.45	600.69	
HCN	1.76	1.00	
нсоон	3.90	6.63	
ISOP			
МЕК	1.37	1.26	
NH3	37.33	48.97	
NO	68.41	61.08	
oc	12.70	16.17	
SO2	103.79	130.71	Contact Maria Val Martin if interested
TOLUENE	93.57	117.1	(mval@atmos.colostate.edu)

PRIMARY BIOLOGICAL AEROSOL PARTICLES (PBAP)

Jaenicke [2005] suggests may be large (1000s Tg/yr) Large particles = short lifetimes (let's not worry about it?) Fungal spores: 4 TgC/yr (fine), 10 TgC/yr (coarse) [Heald and Spracklen, 2009] Bacteria: 0.4-1.8 TgC/yr [Burrows et al., 2010] Hoose et al., 2010 suggest that PBAP not globally important source of IN (despite results of Prenni et al., 2009 and Pratt et al., 2009]