

Expansion of Loblolly Pines for Bioenergy feedstock in the Southeastern US: Climate model insights

Lisa N. Murphy, William J. Riley, William D. Collins, Margaret S. Torn Joint Land and BGC Working Groups March 16, 2010

Short-Rotation Woody Crops

- Perennial woody crops are a potential biomass resource
 - Includes Southern Pines, Hardwoods, Coppice
- In 2008, woody biomass accounted for 10% of electricity produced from renewables (White et al., 2009)
- Short-rotation forests are more cost-effective and mitigate more climate change than long-rotation forests (Hedenus and Azar, 2009)
- Ecosystems can benefit from woody crops

Loblolly Pine (Pinus taeda)

- Most widely planted forestry species in world
- ~30 million acres of pine plantations
- Unlike other conifers, Loblolly has a dynamic seasonal LAI (Zhang and Allen, 1996)
- Prime candidate for plantation bioenergy in the Southeast (Kline and Coleman, 2010)

http://fia.fs.fed.us/library/maps/

Connor, K.F., ed. 2006. Gen. Tech. Rep. SRS-92, USDA

Objectives

- Represent Loblolly pine in CLM4 and use this for future applications to bioenergy
- What is the biophysical response of expanding woody crops for bioenergy?

Methodology

- Change PFT parameters to better simulate modeled energy fluxes
 - Bayesian fusion of model and NACP flux tower data

Observations

- NACP Synthesis/Ameriflux
 - Continuous observations of ecosystem
 level exchanges spanning diurnal, synoptic,
 seasonal, and interannual time scales
- Duke Forest/Loblolly Pine (US-Dk3)
 - 35°N, 79°W
 - Data 2001-2005

Duke Forest Loblolly Simulations

- CLM4 in site mode
 - CN off and LAI set to observed values
- Create a 125 member ensemble changing three parameters that influence photosynthesis
 mp = slope of conductance-to-photosyn. relationship (6)

• 5,7,9,10,12

- qe25 = quantum efficiency [µmol C/µmol photon] (0.06)
 - 0.01,0.05,0.10,0.25,0.50
- **flnr** = fraction of leaf N in Rubisco enzyme (0.05)
 - 0.02,0.05,0.10,0.18,0.25

Growing Season Energy Fluxes

Expected parameter values estimated from Bayesian inversion: 9, 0.05, 0.1 (default: 6, 0.06,0.05)

Left (right): July daily (diurnal) cycle for 125 member ensemble (black), observations (red dots), default simulation (blue cross), and the best simulation (green triangles)

Loblolly vs NET (PD distribution)

- Loblolly decreases sensible (most of the SE) and increases latent heat flux compared to NET - LAI intercepts more rain & results in greater
 - transpiration

Cooler ground

USDA/DOE Target: 1.3 Billion tons of Biomass

- Large land conversion to perennial crops if market for bioenergy emerges
- Acres harvested under DOE/USDA land use change scenario:

PerennialsModerate crop yield increase:35 million acresHigh crop yield increase:55 million acres

 USDA/DOE assumes woody feedstock comes from additional forests planted on marginal agricultural land

Future Land Use Change

Additional 22 million acres of Loblolly by 2100 (less than half of the biomass goal)

Future Energy Balance

• The surface energy budget is:

 $R_n = H + LE + G$

• More net radiation with Loblolly afforestation

Surface Albedo

 Average albedo for Loblolly pine plantations ~0.25-0.31 are much higher than other forests types in the SE US (Sun et al., 2010)

Table 3

Albedo values for selected forests ecosystems.

Forest types	Reported albedo (or) values	Reference
Loblolly pine plantation [16 years old, North Carolina	0.25	This study
	0.22 (growing season)	
	0.29 (dormant season)	
Lobiolly pine plantation (4 years old), coastal North Carolina	0.34	
	0.31 (growing season)	
	0.38 (dormant season)	
Loblolly pine plantation, 4 years old, North Carolina	0.25-0.31	Amatya et al. (2000)
Grass surface, North Carolina	0.35	Amatya et al. (2000)
Loblolly pine plantation, 25 year old, Piedmont North Carolina	0.10	Juang et al. (2007)
Mature hardwoods, piedmont North Carolina	0.15	Juang et al. (2007)
Grass-cover old field	0.20	Juang et al. (2007)
Slash pine plantation, clearcut, Florida	0.26	Gholz and Clark (2002)
Slash pine plantation, 10 years old, Florida	0.18	
Slash pine plantation, mid-rotation, Florida	0.18	
Eastern white pine (Pinus strobus L), 65 years old, Canada	0.12 (growing season)	Restrepo and Arain (2005)
Aspens	0.15 (growing season)	Betts and Ball (1997)
Jack pine and spruce	0.08 (growing season)	
Rain forests	0.12 ± 0.05	Pinker et al. (1980)

Conclusions

- We developed a new PFT for Loblolly pines in CLM4
- Loblolly pines decreased sensible and increased latent heat and may reduce the surface temperature compared to NET trees (possible regional bias)
- Future afforestation with Loblollys may cool region

CAVEATS: Albedo may be too dark; BVOCs form cooling haze in summer of SE (Goldstein et al., 2009)

Parameter Estimation

- We use a Bayesian data assimilation method to evaluate uncertainty in the parameter values [Goes et al., 2010]
- We assume a Gaussian likelihood function and estimate the posterior PDFs of our parameters through MCMC

Posterior pdf of the model parameters mp [left], qe25 [middle], and flnr [right] for each tracer: Sensible Heat (green), Latent Heat (red), and the joint posterior using all observations (black)

Biogenic VOCs

Fig. 2 from Goldstein et al. (2009)

- We replaced PFT 16 which is designated as "wheat"
 - No BVOCs
- BVOCs form cooling haze in summer of SE (Goldstein et al., 2009)

Billion Ton Biomass Goal

 Perennial crops are fast growing grasses and trees grown on idle crop and pasture land

Switchgrass, miscanthus, short-rotation woody crops

Climate Change

- Loblolly less sensitive to heat stress than
 Cottonwood (Luxmoore et al., 2008)
- IPCC warming of North America, more growing-degree days (GDD) (Robeson, 2002; Feng and Hu, 2004).

Hourly, Daily, Monthly Energy Fluxes

Future Energy Partitioning

Afforestation increases
 sensible heat by ~2 Wm⁻
 ² and decreases latent
 by ~5 Wm⁻²

Consistent with Teuling et al.'s (2010) study on European forests vs grasslands

Loblolly vs NET (PD distribution)

- Dynamic LAI of Loblolly compared to NET in CLM
- Results in greater photosynthesis, canopy transpiration and less ground evaporation

