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Subtitle: Barriers to Predicting Changes in Global
Terrestrial CH4 Fluxes

• Goals
– Develop a ‘mechanistic’ representation of the coupled 

microbial, vegetation, reaction, and transport 
processes affecting CH4 exchanges

– Use CLM4Me to 
• Predict large-scale net CH4 exchanges with the atmosphere
• Characterize uncertainty and sensitivity
• Inform future measurements and modeling efforts
• Estimate climate sensitivity of CH4 emissions
• Perform atmospheric simulations
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CH4 Production
• Several interacting populations in anaerobic 

zone
– Anaerobic fermentation, methanogens
– Modeled production tied to predicted respiration
– Proposed model improvements

• Measured anaerobic CH4 / CO2 ratio varies over 
several orders of magnitude (Segers, 1998)
– pH, other electron acceptors (NO3

-, Mn4
+, Fe3

+, SO4
-

2) reduced before methane is produced
• Depth dependence, seasonal inundation
• Q10 based on literature (values vary widely)



CH4 Oxidation
• Sink of CH4 and O2 and source of CO2

• Methanotroph CH4 oxidation rate:

• Model includes other processes that consume O2
– Heterotrophic and autotrophic respiration
– Autotrophic respiration requires much more O2 than 

required by methanotrophs to remove all CH4
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Ebullition (Bubbling)
• Allow for bubble formation at relatively low 

saturation
• Bubbles rise to either atmosphere or first 

unsaturated layer (where it can be oxidized 
quickly)

• Important competition for oxidation 



Aerenchyma

• Inundated plants must supply O2 to their roots and 
remove toxics

• Aerenchyma: conduits for gases to diffuse and advect
• O2 in aerenchyma

– Consumption by cells within the root tissue
– Diffusion toward the root tips
– Diffusion radially to the rhizosphere

• Methanotrophs may exist inside the root tissue 
• Radial diffusion to the rhizosphere can supply other O2

consumers (e.g., methanotrophs, heterotrophs)
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Aerenchyma
• Modeled as gaseous diffusion between the soil layer and 

atmosphere
– Pressure driven flow not yet included

• Porosity varies widely:
– Across species
– Between genotypes within a species
– Between root types (e.g., seminal versus adventitious) 
– Along roots

• Aerenchyma area varies over the growing season as a 
function of NPP and LAI (Wania et al. 2010)
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Aerenchyma Oxidation
• Globally, predicted annual aerenchyma oxidized 

fraction was ~0.6
• Spatially and temporally heterogeneous

– E.g., north of 45°N, fraction of produced CH4 oxidized 
before it reached the surface was 0.35 -0.75

– Minimum in May and maximum in October. 
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Solution Method
• Effective diffusivity 

– Depends on water content, temperature, soil 
properties, and species (Moldrup et al. 2003; 
Millington-Quirk)

• Equilibrium assumed at WT interface
• Boundary conditions:

– Surface conductance for top BC
– Zero gradient for bottom BC

• Competition for O2 by heterotrophs, 
autotrophic respiration, and 
methanotrophs

• Crank-Nicholson for transport solution
– Sources and sinks are explicit



Comparison to Site Observations
• Insufficient observations to develop and test 

models



Inundated Area
– Fit to  satellite data (Prigent et al. 2007) 

– Large source of uncertainty
– Satellite inundated area may not accurately 

represent the area responsible for CH4 emissions 
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Comparison to Atmospheric 
Inversions

Caused by high Tropical NPP 
bias in CLM4



CH4 Emission Sensitivity
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• gridcell-level sensitivities are 
often an order of magnitude



End-of-Century Predictions
• Used CLM4Me to evaluate CH4 emissions over 21st

century
• Predicted a 20% increase in high-latitude, temperate, 

and tropical emissions
– Compare to previous estimates of ~100% increase for high-

latitude systems
• Predicted overall loss of inundated area in continuous 

permafrost and some increase in discontinuous regions
– Emissions increase in the area surrounding Hudson’s bay 

and northern Europe
– Emissions decrease in much of Alaska and areas of 

continuous permafrost



Conclusion (1)

• Sensitivity analysis shows large uncertainty in 
CH4 emissions
– Temperature sensitivities; differences between 

production and oxidation
– Vegetation properties (e.g., aerenchyma)
– Landscape scale representations

• Many important processes for high-latitude 
CH4 emissions require improvement



Planned Future Work

• Improvements planned
– Vertically-resolved SOM pools 

and dynamics
– Peatlands (soil and vegetation)
– Thermokarst and 3-D hydrology
– Fractional inundation
– N cycle and interactions with C

• Improvements needed
– Type of inundated system 

(marsh, bog, estuary, …)
– Aqueous chemistry (pH, redox)
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Conclusion (2)

Two Classes of Studies Could Benefit CH4 Models:
1. Those to better constrain model structure and 

parameterization shown on previous slide
2. Those to improve the spatial representation of 

relevant surface properties

• Experiments should be designed with model 
structures in mind, and inform mechanisms 
represented in the models
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