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EEEEEEEEE ‘ Subtitle: Barriers to Predicting Changes in Global
Terrestrial CH, Fluxes

e Goals

— Develop a ‘mechanistic’ representation of the coupled
microbial, vegetation, reaction, and transport
processes affecting CH, exchanges

— Use CLM4Me to

* Predict large-scale net CH, exchanges with the atmosphere

Characterize uncertainty and sensitivity

Inform future measurements and modeling efforts

Estimate climate sensitivity of CH, emissions

Perform atmospheric simulations
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CH, Production

Several interacting populations in anaerobic
zone

— Anaerobic fermentation, methanogens
— Modeled production tied to predicted respiration
— Proposed model improvements

Measured anaerobic CH, / CO, ratio varies over
several orders of magnitude (Segers, 1998)

— pH, other electron acceptors (NO;", Mn,*, Fe,*, SO,
?) reduced before methane is produced

Depth dependence, seasonal inundation
Q,, based on literature (values vary widely)
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CH, Oxidation

e Sink of CH, and O, and source of CO,
* Methanotroph CH, oxidation rate:

Co
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Qo

* Model includes other processes that consume O,
— Heterotrophic and autotrophic respiration

— Autotrophic respiration requires much more O, than
required by methanotrophs to remove all CH,
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Ebullition (Bubbling)

e Allow for bubble formation at relatively low
saturation

 Bubbles rise to either atmosphere or first

unsaturated layer (where it can be oxidized
quickly)

 Important competition for oxidation
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Aerenchyma

* Inundated plants must supply O, to their roots and
remove toxics

 Aerenchyma: conduits for gases to diffuse and advect
* O, inaerenchyma
— Consumption by cells within the root tissue

— Diffusion toward the root tips
— Diffusion radially to the rhizosphere

e Methanotrophs may exist inside the root tissue

e Radial diffusion to the rhizosphere can supply other O,
consumers (e.g., methanotrophs, heterotrophs)
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Aerenchyma

e Modeled as gaseous diffusion between the soil layer and
atmosphere

— Pressure driven flow not yet included

L_C(@)-C —

2 pT,Or<— Rooting density

= I Z Ly \
D 2 Porosity

e Porosity varies widely:
— Across species
— Between genotypes within a species
— Between root types (e.g., seminal versus adventitious)
— Along roots

e Aerenchyma area varies over the growing season as a
function of NPP and LAI (Wania et al. 2010)
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1 Aerenchyma Oxidation

e Globally, predicted annual aerenchyma oxidized
fraction was ~0.6

e Spatially and temporally heterogeneous

— E.g., north of 45°N, fraction of produced CH, oxidized
before it reached the surface was 0.35 -0.75

— Minimum in May and maximum in October.
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Solution Method

o Effective diffusivity

— Depends on water content, temperature, soil
properties, and species (Moldrup et al. 2003;
Millington-Quirk)

* Equilibrium assumed at WT interface

 Boundary conditions:
— Surface conductance for top BC
— Zero gradient for bottom BC

* Competition for O, by heterotrophs,
autotrophic respiration, and
methanotrophs

* Crank-Nicholson for transport solution
— Sources and sinks are explicit
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Comparison to Site Observations

e |nsufficient observations to develop and test
models

Stordalen, Sweden; Jackowicz—Korczynski et al. (2009) Stordalen, Sweden; Svensson et al. (1999) Degeroe, Sweden; Granberg et al. (2001)
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— Inundated Area

— Fit to satellite data (Prigent et al. 2007)
2,
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— Large source of uncertainty

— Satellite inundated area may not accurately
represent the area responsible for CH, emissions
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Comparison to Atmospheric

Inversions
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. CH, Emission Sensitivity
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e gridcell-level sensitivities are
often an order of magnitude
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End-of-Century Predictions

e Used CLM4Me to evaluate CH, emissions over 21
century

* Predicted a 20% increase in high-latitude, temperate,
and tropical emissions

— Compare to previous estimates of ~¥100% increase for high-
latitude systems
e Predicted overall loss of inundated area in continuous
permafrost and some increase in discontinuous regions
— Emissions increase in the area surrounding Hudson’s bay
and northern Europe

— Emissions decrease in much of Alaska and areas of
continuous permafrost



Conclusion (1)

e Sensitivity analysis shows large uncertainty in
CH, emissions

— Temperature sensitivities; differences between
production and oxidation

— Vegetation properties (e.g., aerenchyma)
— Landscape scale representations

e Many important processes for high-latitude
CH, emissions require improvement
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Planned Future Work

e Improvements planned

— Vertically-resolved SOM pools
and dynamics

— Peatlands (soil and vegetation)

— Thermokarst and 3-D hydrology
— Fractional inundation

— N cycle and interactions with C

e Improvements needed

— Type of inundated system
(marsh, bog, estuary, ...)

— Aqueous chemistry (pH, redox)
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Conclusion (2)

Two Classes of Studies Could Benefit CH, Models:

1. Those to better constrain model structure and
parameterization shown on previous slide

2. Those to improve the spatial representation of
relevant surface properties

 Experiments should be designed with model
structures in mind,
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