Towards a 2D, Computationally Light, Single-Head Ice Sheet Hydrology Model

William COLGAN¹, Harihar RAJARAM², Robert ANDERSON³, Thomas PHILLIPS¹, Ian JOUGHIN⁴, Jay ZWALLY⁵, and Konrad STEFFEN¹

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado ²Department of Civil, Environmental and Architectural Engineering, University of Colorado ³Institute of Arctic and Alpine Research, University of Colorado ⁴Applied Physics Laboratory, University of Washington ⁵Goddard Space Flight Center, National Aeronautics and Space Administration

> CESM Land Ice Working Group Winter Meeting

Study Site and Data: Sermeq Avannarleq Flowline

1 / 18

Empirical Motivation: InSAR 2005/2006 Velocities

Empirical Motivation: GPS 1996/2008 Velocities

(Jay Zwally, per. comm.)

Variations in sliding velocity are due to changes in water storage over time (i.e. "*dS/dt*")... ...where output rate is dominated by conduit efficiency.

Single-Head Hydrology Model (1D): Conduits

1D Results: Animation

VIEW ANIMATION

1D Results: Stability and Residence Time

1D Results: Flotation Fraction (P_w/P_i)

1D Results: Changes in Water Storage Over Time (*dS/dt*)

Aside: "Perennial" Conduits

12 / 18

SC ELA

50

60

40

30

Single-Head Hydrology Model (2D): Overview

Plan: Implement transient equations that describe flow in the center of a *wide* conduit to approximate "gap" flow...

 $\frac{\partial h}{\partial t} = \frac{\hat{m}}{\rho_i} - \hat{w}, \qquad \hat{w} = \frac{N_c}{2\eta_i}\sqrt{l^2 - x^2}. \quad \leftarrow \text{ (one integration too far)}$

(Ng, 1999)

2D Sample Region Output: Overview

2D Sample Region Output: Animation

2D Sample Region Output: Animation

VIEW ANIMATION

Computational Efficiency (Single Processor)

	1D (Flowline)	2D (Test Region)
Numerical Method	ode15s	1 st iteration Piccard
Transients (/node)	h_E and S_c	h_E and \overline{b}
Unknowns (/node)	47	46 (est.)
Constants	~ 50	~ 50
Nodes	120	5000
dt	1 d	6 hr
Processor Time (/dt)	0.2 s (≈ 1.1 min / a)	10 s (≈ 4.1 hr / a)
Processor Time (/dt/node)	0.0017 s	0.0020 s

A 1 by 1 km application to the entire Greenland Ice Sheet would require ~ 2,000,000 nodes... in the realm of feasibility with a quad- or eight core unit.

Towards a 2D, Computationally Light, Single-Head Ice Sheet Hydrology Model

William COLGAN¹, Harihar RAJARAM², Robert ANDERSON³, Thomas PHILLIPS¹, Ian JOUGHIN⁴, Jay ZWALLY⁵, and Konrad STEFFEN¹

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado ²Department of Civil, Environmental and Architectural Engineering, University of Colorado ³Institute of Arctic and Alpine Research, University of Colorado ⁴Applied Physics Laboratory, University of Washington ⁵Goddard Space Flight Center, National Aeronautics and Space Administration

> CESM Land Ice Working Group Winter Meeting

