Progress in modeling glacier hydrology

Gwenn E. Flowers Department of Earth Sciences, Simon Fraser University Burnaby, BC Canada

CESM Land Ice Working Group Meeting NCAR, Boulder, CO, 12-13 Jan 2011

SEU

Canada Research Chairs Chaires de recherche du Canada

Hydrology and dynamics are linked in alpine glaciers ...

Change in subglacially stored water, Kennicott Glacier, Alaska, 29 Jun–3 Jul, 2006 (Bartholomaus et al., 2008)

... and in the continental ice sheets

Subglacial lakes and active drainage systems in Antarctica (Bell, 2008)

$$V = P_i - P_w$$

Basal effective pressure, and hence basal water pressure (over the relevant length scales), is a key link between hydrology and dynamics

Left: glacier surface speed vs. borehole water level at Findelengletscher, 1980-82 (Iken and Bindschadler, 1986)

Comprehensive modeling efforts (Arnold et al. 1998)

- spatially fixed, temporally evolving conduit network
- slow system approximated as small or wide conduits
- slow-to-fast transition prescribed as snowline passes moulins
- •surface melt (calculated from energy balance) routed to moulins
- simulations performed with EPA storm water management model

Arnold et al., 1998

Previous work: 2.5-D multicomponent modeling

Glacier drainage systems

- 1. Supraglacial
- 2. Englacial
- 3. Subglacial
- 4. Subsurface

For each system (in 2-D plan view):

- h =fluid volume [L]
- K(h) =system conductivity [L/T]
- $\psi(h) =$ fluid potential [M/LT²]
- $Q(K, h, \nabla \psi) =$ fluid flux $[L^2/T]$

Example: subglacial drainage (3)

h =fluid volume [L]

h is an areally-averaged water volume and may depend on the effective porosity or configuration of the subglacial drainage system

Hydraulic conductivity, *K*(*h*), is a measure of subglacial hydraulic "connectivity", and can be used to emulate a transition between fast and slow drainage systems

Example: subglacial drainage (3)

 $\psi(h) =$ fluid potential [M/LT²]

$$\psi = p + \rho_{\rm w} g z_{\rm b}$$

Fluid potential depends on subglacial water pressure, p(h), which depends on character of the glacier bed

Snow

Crevasses

4

Ice

Till cap

Aquifer

Bedrock

Diagrams (lower left) courtesy of T. Creyts

Example: subglacial drainage (3)

 $Q(K, h, \nabla \psi) =$ fluid flux $[L^2/T]$

$$Q = - \frac{K(h) h}{\rho_{\rm w} g} \nabla \psi$$

Fluid flux is described by a nonlinear form of Darcy's Law

Previous work: 2.5-D multicomponent modeling

Mass conservation in each drainage system:

1. Supraglacial

$$\frac{\partial h^r}{\partial t} + \frac{\partial Q_j^r}{\partial x_j} = M + R - \phi^{r:e} - \phi^{r:a}$$

2. Englacial

$$\frac{\partial h^e}{\partial t} + \frac{\partial Q_j^e}{\partial x_j} = \phi^{r:e} - \phi^{e:s}$$

3. Subglacial

4. Subsurface

$$\left(\frac{h^{a}}{\rho^{a}}\right)\frac{\partial\rho^{a}}{\partial t} + \frac{\partial h^{a}}{\partial t} + \frac{\partial Q_{j}^{a}}{\partial x_{j}} = \phi^{s:a} + \phi^{r:a}$$

Flowers and Clarke, 2002

Previous work: 2.5-D multicomponent modeling

This simple model can reproduce various qualitative features of borehole water pressure records

Subglacial water pressure data from Trapridge Glacier, Yukon Territory, 9-23 July 1997

Flowers and Clarke, 2002

Previous work: coupling hydrology and dynamics

NASA MODIS image, 9 September 2002

Parameterization of basal sliding including hydrology

 $\mathbf{u}_b = C \,\tau_b \, \frac{P_{\mathbf{w}}}{P_{\mathbf{i}}}$

This implementation of hydrology can enhance or reduce sliding, as opposed to a parameterization based on surface melt volume.

Marshall et al., 2005

Previous work: 2.5-D multicomponent modeling

Pros:

- Harmonized treatment of each drainage system (model layer)
- Description of each system tied loosely to system morphology
- Parameterized vertical coupling replaces prescribed vertical fluxes or full 3-D model
- Explicit description of each system potentially allows more objective simulation of observed behavior
- Fast and slow subglacial drainage systems emulated with extreme simplicity at grid scale

Cons:

- Description of each system tied loosely to system morphology
- Physics of subgrid channelized drainage missing
- Simple treatment of subglacial drainage system requires prescribed relationship between basal water volume & pressure
- Explicit description of each system introduces more parameters, necessitating more data for model calibration
- Ice dynamics absent from description of subglacial system

"Fast" system

Diagrams courtesy of T. Creyts

Subglacial drainage morphology

Conduit in Kötlujökull, Iceland (Näslund and Hassinen, 1996)

Two-component flowband model of basal hydrology

Flowers, 2008

Flowband model description: hydrology

 $h_s = ext{effective water-sheet thickness}$ $Q_{sx} = ext{water flux}$ $b_s = ext{source term}$ $\phi_{s:c} = ext{water exchange term}$ $K_s = ext{hydraulic conductivity}$ $\psi_s = ext{fluid potential}$ $p_s = ext{basal water pressure}$ $t = ext{time}$ $x = ext{horizontal position}$ $ho_w = ext{density of water}$ $g = ext{gravitational acceleration}$

Water balance (continuity):

$$rac{\partial h_{\mathbf{s}}}{\partial t} + rac{\partial Q_{\mathbf{s}x}}{\partial x} = b_{\mathbf{s}} - \phi^{\mathbf{s}:\mathbf{c}}$$

Water flux:

$$Q_{{
m s}x}=-rac{K_{
m s}\,h_{
m s}}{
ho_{
m w}\,g}\,rac{\partial\psi_{
m s}}{\partial x}$$

Fluid potential:

$$\psi_{\mathbf{s}} = p_{\mathbf{s}} +
ho_{\mathbf{w}} \, g \, z$$

Basal water pressure: $p_{
m s}=p_{
m s}(h_{
m s})$

function of bed character, geometry

Flowband model description: hydrology

 $S = ext{conduit cross-sectional area}$ $Q_{sc} = ext{conduit discharge}$ $f_R = ext{friction coefficient}$ $P_w = ext{conduit wetted perimeter}$ $n = ext{flow law exponent}$ $B = ext{flow law coefficient}$ $\psi_c = ext{conduit fluid potential}$ $p_s = ext{basal water pressure}$ $p_c = ext{conduit water pressure}$ $L = ext{latex heat of fusion}$ $c_t = ext{pressure melting coefficient}$ $c_w = ext{heat capcity of water}$

Conservation of mass:

$$egin{aligned} rac{\partial S}{\partial t} &= -rac{Q_{\mathrm{c}x}}{
ho_{\mathrm{i}}L} \left(rac{\partial \psi_{\mathrm{c}}}{\partial x} - c_{\mathrm{t}}
ho_{\mathrm{w}} c_{\mathrm{w}} rac{\partial p_{\mathrm{c}}}{\partial x}
ight) \ &- 2 \, S \left(rac{p_{\mathrm{i}} - p_{\mathrm{c}}}{nB}
ight)^n \end{aligned}$$

Conduit discharge:

$$Q_{cx} = -\left(\frac{8S^3}{P_{\rm w}\,\rho_{\rm w}\,f_R}\right)^{1/2}\,\frac{\partial_x\,\psi_c}{|\partial_x\,\psi_c|^{1/2}}$$

Sheet-conduit water exchange:

$$\phi_{s:c} = \chi_{s:c} \, \frac{K_{s:c} \, h_{s:c}}{\rho_{\rm w} \, g \, d_c^2} \, \left(p_s - p_c \right)$$

Flowband model description: hydrology

Conservation of mass:

$$egin{aligned} rac{\partial S}{\partial t} &= -rac{Q_{\mathrm{c}x}}{
ho_{\mathrm{i}}L} \left(rac{\partial \psi_{\mathrm{c}}}{\partial x} - c_{\mathrm{t}}
ho_{\mathrm{w}} c_{\mathrm{w}} rac{\partial p_{\mathrm{c}}}{\partial x}
ight) \ &- 2 \, S \left(rac{p_{\mathrm{i}} - p_{\mathrm{c}}}{nB}
ight)^n \end{aligned}$$

Conduit discharge:

$$Q_{cx} = -\left(\frac{8\,S^3}{P_{\rm w}\,\rho_{\rm w}\,f_R}\right)^{1/2}\,\frac{\partial_x\,\psi_c}{|\partial_x\,\psi_c|^{1/2}}$$

Allows representation of parallel, non-interacting conduits, given a conduit density per unit width d_c

Sheet-conduit water exchange:

$$\phi_{s:c} = \chi_{s:c} \, \frac{K_{s:c} \, h_{s:c}}{\rho_{\rm w} \, g \, d_c^2} \, \left(p_s - p_c \right)$$

Simulated seasonal evolution of glacier hydrology

Prescribed: annual & diurnal sinusoidal variations in water <u>ice flow</u> input for an idealized glacier geometry

Coupling to ice dynamics described tomorrow by Sam Pimentel Flowers, 2008

Final comments and outlook

- Details of the subgrid physics are important in glacier hydrology and have significant implications for ice dynamics: they (or their effects) must be parameterized or described in a fashion that can be implemented in current continuum models
- May be worth investigating statistical descriptions of subgrid conduit networks for large-scale modeling
- Neglecting short-term transient events in the drainage system probably leads to an underestimation of the influence of hydrology, thus asynchronous coupling with steady-state hydrology may not be the best method of coupling with ice dynamics
- Oversimplified parameterizations of the effects of basal hydrology (e.g. sliding proportional to degree-days) can produce behavior inconsistent with well-established physics and should probably be avoided
- How can we effectively use data to increase the validity of these models? What data would be most appropriate?