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Introduction & background

Hydrology and dynamics are linked in alpine glaciers ...
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Introduction & background

... and in the continental ice sheets

A Subglacial lake
A Active subglacial lake

4 Catchment with active lake
t Flooding events
@ Volcanic activity
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Subglacial lakes and active drainage systems in Antarctica (Bell, 2008)




Introduction & background
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Introduction & background

Subglacial water pressure, Trapridge Glacier
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Diagrams courtesy of T, Creyts




Comprehensive modeling efforts (Arnold et al. 1998)

espatially fixed, temporally evolving conduit network

*slow system approximated as small or wide conduits
*slow-to-fast transition prescribed as snowline passes moulins
esurface melt (calculated from energy balance) routed to moulins
esimulations performed with EPA storm water management model
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Previous work: 2.5-D multicomponent modeling
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For each system (in 2-D plan view):
h — fluid volume [L]
K(h) = system conductivity |L/T)
(k) = fluid potential [M/LT?]
Q(K, h, Vi) = fluid flux [L2/T]
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Previous work: 2.5-D multicomponent modeling

Example: subglacial drainage (3)
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Diagram (left) courtesy of T, Creyts



Previous work: 2.5-D multicomponent modeling

Example: subglacial drainage (3)
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Hydraulic conductivity, K(h), is a measure of subglacial hydraulic
“connectivity”, and can be used to emulate a transition between
fast and slow drainage systems



Previous work: 2.5-D multicomponent modeling

Example: subglacial drainage (3)

¥ (h) = fluid potential [M/LT?]
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Diagrams (lower left) courtesy of T, Creyts



Previous work: 2.5-D multicomponent modeling

Example: subglacial drainage (3)

Q(K, h, Vi) = fluid flux [L?/T] “X>
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Previous work: 2.5-D multicomponent modeling

Mass conservation in each drainage system:

1. Supraglacial

M+R_<br:e

on” | 99
ot 8933'
2. Englacial

on° | 99
Ot I 8$j
3. Subglacial
ohs | 99;

¢TI€ 9158:8

hs L

ot " Ox 4

4. Subsurface

QbS:{l

he 'y 9p° |
pe ot

@8:&

8$j o

(b
. — ¥ i 0 E
. @ Cpite
i (===
111 \\\
subglacial aquitard
heet e
y il F [’ il
| - !

Flowers and Clarke, 2002



Previous work: 2.5-D multicomponent modeling

This simple model can reproduce various qualitative features
of borehole water pressure records
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Previous work: coupling hydrology and dynamics
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This implementation of hydrology can enhance or reduce sliding,
as opposed to a parameterization based on surface melt volume.

Marshall et al., 2005



Previous work: 2.5-D multicomponent modeling

Pros: Cons:

e Harmonized treatment of each < Description of each system tied
drainage system (model layer) loosely to system morphology

e Description of each system tied ¢ Physics of subgrid channelized
loosely to system morphology drainage missing

e Parameterized vertical coupling < Simple treatment of subglacial
replaces prescribed vertical drainage system requires
fluxes or full 3-D model prescribed relationship between

« Explicit description of each basal water volume & pressure

system potentially allows more < Explicit description of each
objective simulation of observed system introduces more
behavior parameters, necessitating more

« Fast and slow subglacial data for model calibration

drainage systems emulated with <lce dynamics absent from
extreme simplicity at grid scale description of subglacial system



Subglacial drainage morphology

“Fast” system

K (h) = system conductivity [L/T]
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Subglacial drainage morphology

Conduit in Kotlujokull, Iceland (Naslund and Hassinen, 1996)




Two-component flowband model of basal hydrology
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Flowband model description: hydrology

ice

b, = effective water-shest thickness

st = water flux
b, = source term

®s.c = water exchange term
K, = hydraulic conductivity
P, = Huid pctential

p: = baszal water pressure

t = time

# = horizortal position

e = density of water

g = gravitational acceleration

Water balance (continuity):
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Water flux:
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Fluid potential:
d)s = Ps T Pwg=

Basal water pressure:
Dy = Pslbe)

function of bed character, geometry



Flowband model description: hydrology

Conservation of mass:

Ice
3 - -2 (3% - aoeer )
2 (o)’

Conduit discharge:

__(_ 883 Y 8,9,
Qcx = (PwpwfR) ‘amquc‘l/Z

S = condwt cross-sectional area

). = conduit discharge

fr = friction coeffcient

e = RORGIY TREG DRGSR Sheet-conduit water exchange:
7t = How law exponent

B = flow law coefficiert

P. = condwt fud potential L KS:C hs:c o
p. = basal water pressurs Cbs:c — Xs:c 3 Ps Pe
p. = condut water pressure Pw 4 dc

L = latex heat of fusion
¢y = pressure melting coefficient
cw = heat capcity of water



Flowband model description: hydrology

ice

Allows representation of
parallel, non-interacting
conduits, given a conduit
density per unit width 4.

Conservation of mass:
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Conduit discharge:
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Sheet-conduit water exchange:
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Simulated seasonal evolution of glacier hydrology

Prescribed: annual & diurnal sinusoidal variations in water ice flow
input for an idealized glacier geometry
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Flowers, 2008




Final comments and outlook

* Details of the subgrid physics are important in glacier hydrology
and have significant implications for ice dynamics: they (or their
effects) must be parameterized or described in a fashion that can
be implemented in current continuum models

* May be worth investigating statistical descriptions of subgrid=-.
conduit networks for large-scale modeling
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* Neglecting short-term transient events in the drainage system |
probably leads to an underestimation of the influence of hydrology,
thus asynchronous coupling with steady-state hydrology may not
be the best method of coupling with ice dynamics
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e Oversimplified parameterizations of the effects of basal hydrology
(e.q. sliding proportional to degree-days) can produce behavior
inconsistent with well-established physics and should probably be
avoided

* How can we effectively use data to increase the validity of these
models? What data would be most appropriate?





