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Perspective

I Computational scientist’s [CS + Applied Math]
I Motivated by a physical problem

I Stokes + free surface flow + thermodynamics

I Focus on methods and tools
I Meshing
I Preconditioning
I Sensitivity
I Time-stepping
I . . .
I Complete toolchain

I Longer-term horizon



Contributions

I Represents work by many people on the team.
I Leverages other projects/tools:

I PETSc http://mcs.anl.gov/petsc
I ML, Hypre, MUMPS

I ITAPS http://itaps.org
I MOAB, CGM, Lasso

I “Progress report”

I Focus on meshing/geometry

http://mcs.anl.gov/petsc
http://itaps.org
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Bindschadler 2008



Grounding lines

Schoof 2007

Bueler et. al. 2005

I ocean circulation is very
sensitive to grounding line
geometry, feedback

I non-shallow physics applies in
vicinity of grounding line

I current models are less than
first-order accurate at margins

I extremely high resolution
needed for qualitatively correct
results on Eulerian meshes



(Schoof 2007)

Evolution of grounding
line location on 20, 15,
10, 7.5 and 2.5
kilometer meshes in
one horizontal
dimension. (Durand et
al. 2009)



(Schoof 2010)

y+ underneath an ice shelf

I Order of magnitude dimensions:
length 100m, speed 10cm/sec

I Viscous boundary layer:
y + ∈ O(1) =⇒ 1mm grid

I No-slip boundary conditions
requires resolution of this layer

I Otherwise we need nonlinear
slip

I still usually y + ∈ O(100)

I Estimates come from validation
(lab experiments) with heat
transfer in industrial and
aerospace applications

I Thermohaline boundary layer:
1− 10m

I Boundary layer equations
require solution of a Riemann
problem



LES+RANS with wall modeling

I State of the art for high-Reynolds separating flows

I Subshelf circulation separates when it reaches neutral
buoyancy
(this is a crucial limiting process)

I Is it possible to accurately predict heat transfer, separation,
and overturning with y + ∈ O(105)?

It has been repeatedly observed, especially at high
Reynolds numbers and coarse grids and with the interface
location being around y + = O(100− 200), that the high
turbulent viscosity generated by the turbulunce model in
the inner region extends, as subgrid-scale viscosity, deeply
into the outer LES region, causing severe damping in the
resolved motion and a misrepresentation of the resolved
structure as well as the time-mean properties.

(Tessicini, Li, Leschziner, Simulation of Separation from Curved
Surfaces with Combined LES and RANS Schemes, 2007)



Non-Newtonian Stokes system: velocity u, pressure p

−∇ · (ηDu) +∇p − f = 0

∇ · u = 0

Du = 1
2

(
∇u + (∇u)T

)
γ(Du) = 1

2 Du :Du

η(γ) = B(Θ, . . . )
(
ε+ γ

) p−2
2

p = 1 + 1
n ≈

4
3

T = 1− n⊗ n
with boundary conditions

(ηDu− p1) · n =

{
0 free surface

−ρwzn ice-ocean interface

u = 0 frozen bed,Θ < Θ0

u · n = gmelt(Tu, . . . )

T (ηDu− p1) · n = gslip(Tu, . . . )

}
nonlinear slip,Θ ≥ Θ0

gslip(Tu) = βm(. . . )|Tu|m−1Tu

Navier m = 1, Weertman m ≈ 1
3 , Coulomb m = 0.



Other critical equations
I Mesh motion: x

−∇ · σ = 0

surface: (ẋ− u) · n = qBL, Tσ · n = 0

σ = µ
[
2Dw + (∇w)T∇w

]
+ λ|∇w|1

w = x− x0

I Heat transport: Θ (enthalpy)

∂

∂t
Θ + (u− ẋ) · ∇Θ

−∇·
[
κT (Θ)∇T (Θ) +κω∇ω(Θ) + qD(Θ)

]
−ηDu :Du = 0

I ALE advection
I Thermal diffusion

I Moisture diffusion/Darcy
flow

I Strain heating

Note: κ(Θ) and qD(Θ) are very sensitive near Θ = Θ0

Summary of primal variables in DAE
u velocity algebraic
p pressure algebraic
x mesh location algebraic in domain, differential at surface
Θ enthalpy differential



ALE form
After discretization in time (α ∝ 1/∆t) we have a Jacobian

AII AIΓ

αMΓΓ −NΓΓ

GII GΓI BII BIΓ CT
I DI

GIΓ GΓΓ BΓI BΓΓ CT
Γ DΓ

GIp GΓp CI CΓ

αEI αEΓ FI FΓ αMΘ + J





xI
xΓ

uI
uΓ

p
Θ


I pseudo-elasticity for mesh motion

I (ẋ− u) · n = accumulution

I “just” geometry

I Stokes problem

I temperature dependence of rheology

I convective terms and strain heating in heat transport

I thermal advection-diffusion



Construction of conservative nodal normals

ni =

∫
Γ
φin

I Exact conservation even with rough surfaces
I Definition is robust in 2D and for first-order elements in 3D
I
∫

Γ φ
i = 0 for corner basis function of undeformed P2 triangle

I May be negative for sufficiently deformed quadrilaterals
I Mesh motion should use normals from a smooth geometry

model
I Difference between geometric normal and conservative normal

introduces correction term to conserve mass within the mesh
I Anomolous velocities if disagreement is large

(fast moving mesh, rough surface)
I Normal field not as smooth/accurate as desirable

(and achievable with non-conservative normals)
I Mostly problematic for surface tension
I Walkley et al, On calculation of normals in free-surface flow

problems, 2004



Need for well-balancing

(Behr, On the application of slip boundary condition on curved surfaces, 2004)



“No” boundary condition
I Integration by parts produces∫

Γ
v · Tσ · n, σ = ηDu− p1, T = 1− n⊗ n

I Continuous weak form requires either
I Dirichlet: u|Γ = f =⇒ v|Γ = 0
I Neumann/Robin: σ · n|Γ = g(u, p)

I Discrete problem allows integration of σ · n“as is”
I Extends validity of equations to include Γ
I Not valid for continuum equations
I Introduced by Papanastasiou, Malamataris, and Ellwood, 1992

for Navier-Stokes outflow boundaries
I Griffiths, The ‘no boundary condition’ outflow boundary

condition, 1997
I Proves L∞ order of accuracy O((h + 1/Pe)p+1)

for Galerkin finite elements of order p (linear
advection-diffusion)

I Demonstrates equivalence with collocation at Radau points
in outflow element

I Used in slip boundary conditions by Behr 2004



Meshing Needs

I Accurate hexahedral meshes

I Smooth normals

I Variable resolution

I Grounding lines



Surface Elevation



Surface Elevation data

Ice Surface Elevation for Jakobshavn Glacier
Photogrammetric analysis of July 1985 high altitude areal photos

I Analyzed in Fastook et al., 1995

I Reanalyzed in Motyka et al., 2010

Approx. 5M points

I UTM 22 system

I Format: x , y, z (Easting, Northing, elevation)
517480.0000 7623000.0000 164.4277 15
517520.0000 7623000.0000 164.3393 15
517560.0000 7623000.0000 164.2635 15
517480.0000 7623040.0000 161.9732 15
. . .



Bed Elevation
Bedrock Elevation for Jakobshavn Glacier

I https://www.cresis.ku.edu
I Converted to UTM 22, using GDAL library
I Approx. 670K points

https://www.cresis.ku.edu


Combining Surface Data



Surface Meshing



Surface simplification

I Use Qslim v1 algorithm, implemented in MeshKit using
MOAB http://mgarland.org/software/qslim10.html

I Main method of decimation: Edge Contraction

I Each edge contraction has a “cost” based on a quadratic error
metric:
http://mgarland.org/files/papers/quadrics.pdf



Surface Decimation

Reduction from 10M to 20K triangles



Trianglar mesh cleanup



Triangular mesh cleanup

Edge “trimming”



Surface mesh smoothing: with and without feature
retention

Feature definition affects generated meshes:
6 geometric vertices, 7 geometric edges, 2 geometric faces vs
1 geometric vertices, 1 geometric edges, 1 geometric faces



Quad mesh generation
I Camal Paver, quad mesh generator coming to MeshKit

I Trim region of interest with user-defined planar polygon

I Guided (e.g., ice thickness)



Hex mesh generation

Surface mesh over area of interest



Hex mesh generation

Surface mesh over area of interest



Hesh mesh generation

I Extrude mesh in Z until meeting ice surface



Hex mesh: grounding line

Defined as planar polygonal line



Hex mesh: grounding line



Hex mesh: grounding line



Hex mesh: grounding line



Splitting for Multiphysics[
A B
C D

] [
x
y

]
=

[
f
g

]
I Relaxation: -pc_fieldsplit_type [addi-

tive,multiplicative,symmetric_multiplicative][
A

D

]−1 [
A
C D

]−1 [
A

1

]−1
(
1−

[
A B

1

] [
A
C D

]−1
)

I Gauss-Seidel inspired, works when fields are loosely coupled

I Factorization: -pc_fieldsplit_type schur[
1

CA−1 1

] [
A B

S

]
, S = D − CA−1B

I robust (exact factorization), can often drop lower block
I how to precondition S which is usually dense?

I interpret as differential operators, use approximate
commutators



1-level Domain decomposition

Domain size L, subdomain size H, element size h

Overlapping/Schwarz

I Solve Dirichlet problems on overlapping subdomains

I No overlap: its ∈ O
(

L√
Hh

)
I Overlap δ: its ∈

(
L√
Hδ

)
Neumann-Neumann

I Solve Neumann problems on non-overlapping subdomains

I its ∈ O
(
L
H (1 + log H

h )
)

I Tricky null space issues (floating subdomains)

I Multilevel variants knock off the leading L
H

I Both overlapping and nonoverlapping with this bound



Multigrid convergence properties

I Textbook: P−1A is spectrally equivalent to identity

I Most theory applies to SPD systems

I nonsymmetric (e.g. advection, shallow water, Euler)
with low-order upwind discretization

I Good when coefficients in problem are smooth
I large jumps and anisotropy are harder
I build low-energy interpolants
I use stronger smoothers

I Aggressive coarsening is critical, especially in parallel

I Most theory uses SOR smoothers, ILU often more robust

I Coarsest component usually solved semi-redundantly with
direct solver

I Multilevel Schwarz is an extreme case of aggressive coarsening
and strong smoothers. Exotic interpolants for robustness.



Homogenization-based preconditioners
I Numerical homogenization constructs optimal coarse spaces

(Berlyand and Owhadi, 2010)
I Treats general L∞ coefficients (jumps, etc)
I Globally-supported bases, expensive to compute

Localization via DD techniques
I Overlapping decomposition (Owhadi and Zheng, 2010,

preprint)
I Control coarse-space error as a function of overlap

What about evolvoing coefficients?
I Idea: advect coarse space (Stokes) (Karpeev and Haines)
I Predictor-corrector technique reduces recomputation error
I Localization further reduces complexity

Strong mesh-solver coupling (similar for FETI-DP, BDDC, . . . )
I Couple PETSc (TOPS) and MOAB (ITAPS)
I PETSc DM object implemented with MOAB backend
I MOAB implements decompositions via tags/sets
I PETSc constructs scatters, subdomain basis solves, coarse

space solve



Outlook

I Geometry
I Exact local conservation is critical for problems with

discontinuous geometry and coefficients
I Nonlinear slip on irregular surfaces is hard but tractable

(mostly)
I Modeling of boundary layer processes in highly anisotropic

geometry likely requires conforming to the interface

I Solvers
I Smooth manufactured solutions are necessary, but not

sufficient to study solver and discretization performance
I Need good software to combine relaxation for loosely coupled

processes and factorization for stiff/indefinite coupling
I Need good software/algorithms for preconditioning of problems

with rough evolving coefficients
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