Berkeley-ISICLES (BISICLES): High Performance Adaptive Algorithms For Ice Sheet Modeling

Dan Martin

Lawrence Berkeley National Laboratory

January 12, 2011

BISICLES - Goal

Goal: Build a parallel, adaptive ice-sheet model

- Localized regions where high resolution needed to accurately resolve ice-sheet dynamics (500 m or better at grounding lines)
- Large regions where such high resolution is unnecessary (e.g. East Antarctica)
- Problem is well-suited for adaptive mesh refinement (AMR)
- Want good parallel efficiency
- Need good solver performance

Much higher resolution (1 km versus 5 km) required in regions of high velocity (yellow \rightarrow green).

[Rignot & Thomas, 2002]

BISICLES - Approaches

Develop an efficient parallel implementation of Glimmer-CISM by

- Incorporating structured-grid AMR using the Chombo framework to increase resolution in regions where changes are more rapid,
- Exploring new discretizations and formulations where appropriate (L1L2)
- Improving performance and convergence of linear and nonlinear solvers, and
- Deploying auto-tuning techniques to improve performance of key computational kernels.

Block-Structured Local Refinement

Refined regions are organized into rectangular patches.

Refinement in time as well as in space for time-dependent problems.

Office of

Science

Algorithmic advantages:

U.S. DEPARTMENT OF

- Build on mature structured-grid discretization methods.
- Low overhead due to irregular data structures, relative to single structured-grid algorithm.

08

BISICLES Project Outline

- Joint work involving LBNL and LANL
 - LBNL: Esmond Ng (PI), Dan Martin (AMR), Woo-Sun Yang (Performance) Optimization), Sam Williams (Autotuning)
 - LANL: Bill Lipscomb (co-PI), Doug Ranken (software support)
- Collaboration with Tony Payne (one of the original authors of Glimmer) and Stephen Cornford (Univ of Bristol, UK)
- Build AMR implementation of Glimmer-CISM
- Extensions to existing Chombo infrastructure added as needed
- Autotuning techniques deployed as components are developed
- Linear/nonlinear solver improvements
- Coupling with CESM using existing Glimmer-CISM interface and by developing new interfaces as needed

Models and Approximations

Full-Stokes

- Best fidelity to ice sheet dynamics
- Computationally expensive (full 3D coupled nonlinear elliptic equations)

Approximate Stokes

- Use scaling arguments to produce simpler set of equations
- Common expansion is in ratio of vertical to horizontal length scales ($\varepsilon = \frac{[h]}{[I]}$)
- E.g. Blatter-Pattyn (most common "higher-order" model), accurate to $O(\epsilon^2)$
- Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)

Depth-integrated

- Special case of approximate Stokes with 2D equation set ("Shelfy-stream")
- Easiest to work with computationally
- Generally less accurate

"L1L2" Model (Schoof and Hindmarsh, 2010)

- Asymptotic expansion in 2 flow parameters:
 - \mathcal{E} -- ratio of length scales $\frac{[h]}{[x]}$
 - λ ratio of shear to normal stresses $\frac{[\tau_{shear}]}{[\tau_{normal}]}$
 - Large $\lambda :$ shear-dominated flow
 - Small $\boldsymbol{\lambda}:$ sliding-dominated flow
- □ Blatter-Pattyn approximates full-Stokes to $O(\varepsilon^2)$ for all λ regimes
- □ Asymptotic expansion: (e.g. $u(x,z) = u_0 + \varepsilon u_1 + O(\varepsilon^2)$)
 - Leading order velocity term: $u_0 = u_0(x)$ (no vertical dependence)
 - Don't need shear stresses to $O(\varepsilon^2)$ to compute velocity to $O(\varepsilon^2)$
 - Provides basis for depth-integrated approach

"L1L2" Model (Schoof and Hindmarsh, 2010), cont.

- □ Use this result to construct a computationally efficient scheme:
 - 1. Approximate constitutive relation relating grad(u) and stress field τ with one relating $grad(u|_{z=b})$, vertical shear stresses τ_{xz} and τ_{xz} given by the SIA / lubrication approximation and other components $\tau_{xx}(x, y, z)$, $\tau_{xy}(x, y, z)$, etc
 - 2. leads to an effective viscosity $\mu(x, y, z)$ which depends only on $grad(u|_{z=b})$ and $grad(z_s)$, ice thickness, etc
 - 3. Momentum equation can then be integrated vertically, giving a nonlinear, 2D, elliptic equation for $u|_{z=b}(x, y)$
 - 4. u(x, y, z) can be reconstructed from $u|_{z=b}(x, y)$

"L1L2" Model (Schoof and Hindmarsh, 2010), cont.

- □ Similar formal accuracy to Blatter-Pattyn $O(\varepsilon^2)$
 - Recovers proper fast- and slow-sliding limits:
 - SIA $(1 \ll \lambda \le \varepsilon^{-1/n})$ -- accurate to $O(\varepsilon^2 \lambda^{n-2})$
 - SSA $(\varepsilon \le \lambda \le 1)$ accurate to $O(\varepsilon^2)$
- Computationally much less expensive -- enables fully 2D vertically integrated discretizations.

Discretizations

- Baseline model is the one used in Glimmer-CISM:
 - Logically-rectangular grid, obtained from a time-dependent uniform mapping.
 - 2D equation for ice thickness, coupled with 2D steady elliptic equation for the horizontal velocity components. The vertical velocity is obtained from the assumption of incompressibility.
 - Advection-diffusion equation for temperature.
- Use of Finite-volume discretizations (vs. Finite-difference discretizations) simplifies implementation of local refinement.
- Software implementation based on constructing and extending existing solvers using the Chombo libraries.

$$\frac{\partial H}{\partial t} = b - \nabla \cdot H \overline{\mathbf{u}}$$

$$\frac{\partial T}{\partial t} = \frac{k}{\rho c} \nabla^2 T - \mathbf{u} \cdot \nabla T + \frac{\Phi}{\rho c} - w \frac{\partial T}{\partial z}$$

BISICLES results - Grounding line study

- Bedrock topography based on Katz and Worster (2010)
- Evolve initially uniform-thickness ice to steady state
- Repeatedly add refinement and evolve to steady state
- □ G.L. advances with finer resolution
- □ Appear to need better than 1 km

BISICLES -- Scaling

Initial tests show good strong scaling to at least 128 processors for nonlinear velocity solve (L1L2 approximation):

Nonlinear velocity solve scaling

Nonlinear Solver Improvements

- Most computational effort spent in nonlinear ice velocity solve.
- Picard iteration:
 - Robust
 - Simple to implement
 - Slow (but steady) convergence
- □ Jacobian-free Newton-Krylov (JFNK):
 - More complex to implement
 - Works best with decent initial guess
 - Rapid convergence
 - Well-suited for Chombo AMR elliptic solvers
- Approach use Picard iteration initially, then switch to JFNK when convergence slows

Nonlinear Solver Improvements (cont)

U.S. DEPARTMENT OF

Office of

Science

RIRIRIER

 University of 🕙 BRISTÓL

NATIONAL LABORATORY

EST. 1943

BERKELEY L

Nonlinear Solver Convergence

Interface with Glimmer-CISM

- □ Glimmer-CISM has coupler to CESM, additional physics
 - Well-documented and widely accepted
- Our approach couple to Glimmer-CISM code as an alternate "dynamical core"
 - Allows leveraging existing capabilities
 - Use the same coupler to CESM
 - BISICLES code sets up within Glimmer-CISM and maintains its own storage, etc.
 - Communicates through defined interface layer
 - Instant access to a wide variety of test problems
 - Interface development almost complete
 - Part of larger alternative "dycore" discussion for Glimmer-CISM

"Hump" test problem

Standard test problem -- isolated "blob" of ice on level ground

user: dmorfin Fri Oct. 8 17:39:26 2010

Greenland test problem

- Problem setup from Steve Price (LANL)
- Need to process initial condition somewhat in order for solver to converge (still work in progress)

Antarctica

Uses new "model-friendly" problem setup (Le Brocq, Payne, Vieli (2010))

Antarctica, cont

- 10 km base mesh with 2 levels of refinement (5 km, 2.5 km)
 - base level (10 km): 258,048 cells (100% of domain)
 - level 1 (5 km): 431,360 zones (41.8% of domain)
 - Level 2 (2.5 km): 728,832 cells (17.7% of domain)

Pseudocolor Var: Vel_magnitude — 400.0

University of

BRISTOL

Parallel scaling, Antarctica benchmark

BISICLES - Next steps

- □ More work with nonlinear velocity solve.
- □ Semi-implicit time-discretization for stability, accuracy.
- Non-isothermal capability
- □ Finish coupling with existing Glimmer-CISM code
- Performance optimization and autotuning.
- □ Begin work on full 3D velocity solve.
- Refinement in time?

