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BISICLES - Goal 

Goal: Build a parallel, adaptive ice-sheet model 

 Localized regions where high resolution needed to accurately resolve ice-sheet 

dynamics (500 m or better at grounding lines) 

 Large regions where such high resolution is unnecessary (e.g. East Antarctica) 

 Problem is well-suited for adaptive mesh refinement (AMR) 

 Want good parallel efficiency 

 Need good solver performance 

 

 

 

 Much higher resolution (1 

km versus 5 km) required 

in regions of high velocity 

(yellow  green).  

[Rignot & Thomas, 2002]  



 

 Develop an efficient parallel implementation of Glimmer-CISM by 
 

 Incorporating structured-grid AMR using the Chombo framework to increase 

resolution in regions where changes are more rapid, 

 Exploring new discretizations and formulations where appropriate (L1L2) 

 Improving performance and convergence of linear and nonlinear solvers, and 

 Deploying auto-tuning techniques 

to improve performance of key 

computational kernels. 

BISICLES – Approaches 



Block-Structured Local Refinement 

 Refined regions are organized into rectangular 

patches. 

 

 

 

 

 

 

 Refinement in time as well as in space for 

time-dependent problems. 

 Algorithmic advantages: 

 Build on mature structured-grid discretization 

methods. 

 Low overhead due to irregular data structures, 

relative to single structured-grid algorithm. 



BISICLES Project Outline 

 Joint work involving LBNL and LANL 

 LBNL: Esmond Ng (PI), Dan Martin (AMR), Woo-Sun Yang (Performance 

Optimization),  Sam Williams (Autotuning) 

 LANL: Bill Lipscomb (co-PI), Doug Ranken (software support) 

 Collaboration with Tony Payne (one of the original authors of Glimmer) 

and Stephen Cornford (Univ of Bristol, UK) 

 

 Build AMR implementation of Glimmer-CISM 

 Extensions to existing Chombo infrastructure added as needed 

 Autotuning techniques deployed as components are developed 

 Linear/nonlinear solver improvements 

 

 Coupling with CESM using existing Glimmer-CISM interface and by 

developing new interfaces as needed 

 



Models and Approximations  

 Full-Stokes  
 Best fidelity to ice sheet dynamics 

 Computationally expensive (full 3D coupled nonlinear elliptic equations) 

 Approximate Stokes 
 Use scaling arguments to produce simpler set of equations 

 Common expansion is in ratio of vertical to horizontal length scales (𝜀 =  
[ℎ]

[𝑙]
) 

 E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(𝜀2) 

 Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)  

 Depth-integrated 
 Special case of approximate Stokes with 2D equation set (“Shelfy-stream”) 

 Easiest to work with computationally 

 Generally less accurate 

 

 

     



“L1L2” Model (Schoof and Hindmarsh, 2010) 

 Asymptotic expansion in 2 flow parameters: 

 e -- ratio of length scales 
ℎ

𝑥
  

l – ratio of shear to normal stresses 
𝜏𝑠ℎ𝑒𝑎𝑟

𝜏𝑛𝑜𝑟𝑚𝑎𝑙
  

• Large l: shear-dominated flow 

• Small l: sliding-dominated flow 

 Blatter-Pattyn approximates full-Stokes to 𝑂 𝜀2  for all l regimes 

 

 Asymptotic expansion: (e.g. 𝑢 𝑥, 𝑧 =  𝑢0 + 𝜀𝑢1 + 𝑂(𝜀2) ) 

 Leading order velocity term:  𝑢0 = 𝑢0(𝑥)  (no vertical dependence) 

 Don’t need shear stresses to 𝑂 𝜀2  to compute velocity to 𝑂 𝜀2  

 Provides basis for depth-integrated approach 

 



“L1L2” Model (Schoof and Hindmarsh, 2010), cont. 

 Use this result to construct a computationally efficient scheme: 

 

1. Approximate constitutive relation relating 𝑔𝑟𝑎𝑑 𝑢  and stress field 𝜏 with 

one relating 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏), vertical shear stresses 𝜏𝑥𝑧 and 𝜏𝑥𝑧 given by the 

SIA / lubrication approximation and other components  𝜏𝑥𝑥 𝑥, 𝑦, 𝑧 ,
𝜏𝑥𝑦 𝑥, 𝑦, 𝑧 , etc 

 

2. leads to an effective viscosity 𝜇(𝑥, 𝑦, 𝑧) which depends only on 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏) 
and 𝑔𝑟𝑎𝑑 𝑧𝑠 , ice thickness, etc  

 

3. Momentum equation can then be integrated vertically, giving a nonlinear, 

2D, elliptic equation for 𝑢 𝑧=𝑏(𝑥, 𝑦)  

 

4.  𝑢(𝑥, 𝑦, 𝑧) can be reconstructed from 𝑢 𝑧=𝑏(𝑥, 𝑦) 

 

 



“L1L2” Model (Schoof and Hindmarsh, 2010), cont. 

 Similar formal accuracy to Blatter-Pattyn 𝑂(𝜀2) 

 Recovers proper fast- and slow-sliding limits: 

• SIA   (1 ≪ 𝜆 ≤ 𝜀
−1

𝑛 ) --  accurate to 𝑂(𝜀2𝜆𝑛−2) 

• SSA  (𝜀 ≤ 𝜆 ≤ 1) – accurate to 𝑂(𝜀2) 
 

 Computationally much less expensive -- enables fully 2D 

vertically integrated discretizations. 
 



Discretizations 

 Baseline model is the one used in  

Glimmer-CISM: 

 Logically-rectangular grid, obtained 

from a time-dependent uniform 

mapping. 

 2D equation for ice thickness, coupled with 

2D steady elliptic equation for the horizontal 

velocity components. The vertical velocity is 

obtained from the assumption of 

incompressibility. 

 Advection-diffusion equation for temperature. 
 

 Use of Finite-volume discretizations (vs. Finite-difference discretizations) 

simplifies implementation of local refinement. 

 Software implementation based on constructing and extending existing solvers 

using the Chombo libraries. 
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BISICLES results – Grounding line study 

 Bedrock topography based on Katz and 

Worster (2010) 

 Evolve initially uniform-thickness ice to 

steady state 

 Repeatedly add refinement and evolve 

to steady state 

 G.L. advances with finer resolution 

 Appear to need better than 1 km 

 



BISICLES -- Scaling 

Initial tests show good strong scaling to at least 128 processors for nonlinear 

velocity solve (L1L2 approximation): 

 

 



Nonlinear Solver Improvements 

 Most computational effort spent in nonlinear ice 

velocity solve. 

 Picard iteration:  

• Robust 

• Simple to implement 

• Slow (but steady) convergence 

 Jacobian-free Newton-Krylov (JFNK): 

• More complex to implement 

• Works best with decent initial guess 

• Rapid convergence 

• Well-suited for Chombo AMR elliptic solvers 

  Approach – use Picard iteration initially, then switch to 

JFNK when convergence slows 

 

 

 

 

 

 



Nonlinear Solver Improvements (cont) 



Interface with Glimmer-CISM  

 Glimmer-CISM has coupler to CESM, additional physics 

 Well-documented and widely accepted 

 Our approach – couple to Glimmer-CISM code as an 

alternate “dynamical core” 

 Allows leveraging existing capabilities  

 Use the same coupler to CESM 

 BISICLES code sets up within Glimmer-CISM and maintains 

its own storage, etc. 

 Communicates through defined interface layer 

 Instant access to a wide variety of test problems 

 Interface development almost complete  

 Part of larger alternative “dycore” discussion for Glimmer-CISM 



“Hump” test problem  

 Standard test problem -- isolated “blob” of ice on level 

ground 



Greenland test problem 

 Problem setup from Steve Price 

(LANL) 

 Need to process initial condition 

somewhat in order for solver to 

converge (still work in progress) 

 

 

 



Antarctica 

Uses new “model-friendly” problem setup   

(Le Brocq, Payne, Vieli (2010) ) 



Antarctica, cont   

• 10 km base mesh with 2 levels of refinement (5 km, 2.5 km) 

• base level (10 km): 258,048 cells (100% of domain) 

• level 1 (5 km):  431,360 zones (41.8% of domain) 

• Level 2 (2.5 km): 728,832 cells (17.7% of domain) 

 

 

 

 

 

 



Parallel scaling, Antarctica benchmark 



BISICLES – Next steps 

 More work with nonlinear velocity solve. 

 Semi-implicit time-discretization for stability, accuracy. 

 Non-isothermal capability 

 Finish coupling with existing Glimmer-CISM code   

 Performance optimization and autotuning.    

 Begin work on full 3D velocity solve. 

 Refinement in time? 


