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Ice-flow Model (Pimentel et al., JGR, 2010)

Flow-band: 2-D flowline model with flow-unit width
parameter

Higher-order stresses: 1st-order approximation of the
Stokes equation (Blatter, 1995; Pattyn, 2002), includes
longitudinal stress gradients

∂

∂x
(2σ′

xx + σ′
yy ) +

∂σxz

∂z
+ Flat = ρg

∂s
∂x

Lateral Drag: lateral shear stress parameterization,
includes sliding at the side walls and glacier basin shape

Flat = Flat(x , z,u(x , z))
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Basal Sliding

τb = C
(

ub

ub + CnNnΛ

)1/n

N, Λ =
λmaxA
mmax

The hydrology will be coupled to the ice mechanics by use of a
regularized Coulomb friction law (Schoof, 2005; Gagliardini et
al.,2007)

This is a pressure dependent sliding rule utilizing the spatial and
temporal variations in basal water pressure from the hydrology
model

Overcomes problem of standard sliding laws that allow arbitrarily
large basal shear stresses regardless of effective pressure

Implemented as a non-linear Robin-type boundary condition
which cannot be solved independently but forms part of the
solution to the ice-flow problem
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Subglacial Model (Pimentel & Flowers, Proc. R. Soc. A, 2010)

A mixed subglacial drainage network which includes dynamic
switching between drainage components

Distributed
- macroporous water sheet
- low capacity and efficiency
- characteristic of winter

Channelized
- ice-walled conduits
- high capacity and efficiency
- characteristic of summer

Uplift
- When large amounts of water impinge on the glacier bed

high water pressures are generated and cause flexure of
the overlying ice

- Elastic uplift is parameterized by treating the glacier as a
uniform static beam
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Subglacial Hydrology Model

Conservation equation:

∂hs

∂t
+
∂qs

∂x
=

QG + ubτb
ρL

+ ḃs +φs:c

Water flux:

qs = −Khs

ρwg
∂ψs

∂x

Fluid potential:

ψs = Ps
w + ρwgb

Basal water pressure:

Ps
w = Ps

w (hs)

Pimentel Glacio-Hydrodynamic Modelling



Subglacial Hydrology Model

Conservation equation:
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A Test Case

An idealized mountain glacier
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Comments

Model captures seasonal and diurnal cycles as well as the
spring-transition

Such features have been well observed in Alpine glacier
systems (e.g. Haut Glacier d’Arolla)

Increasing evidence of similar behaviour on Arctic and
Greenland glaciers (e.g. Bartholomew et al., Nat. Geo.,
2010)

Suggesting a unified treatment of basal processes across
a range of scales
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Subglacial Floods

Supraglacial Lake Drainage
Event

Das et al. Science, 2008
Supraglacial lake of
volume 0.044 km3

Drains through 980 m of
ice in 1.4 h
1.2 m of vertical uplift and
0.8 m of horizontal
displacement
Rapid response followed
by subsidence and
deceleration over 24 hrs

Supraglacial lake on Belcher Glacier, Devon Island Ice
Cap. Photo by A. Garner.
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Comments

Pre-existing channel network needed to dissipate flood
response as quickly as observed

“Regular” seasonal melt as well as lake tapping events
condition subglacial system

Model limitations - multi-directional flow of flood water

Other processes - horizontal turbulent hydraulic fracture for
basal crack propagation (Tsai & Rice, JGR, 2010)
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Future Applications

Belcher Glacier, Canadian Arctic
A large, fast-flowing tidewater outlet glacier
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Belcher Glacier, Canadian Arctic

Image from Angus Duncan (University of Alberta)
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Russell Glacier, Greenland

Image from Andrew Fitzpatrick (University of Aberystwyth)
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Russell Glacier, Greenland

Image from Andrew Fitzpatrick (University of Aberystwyth)
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Russell Glacier, Greenland

2009 velocities using TerraSAR-X images and speckle tracking
algorithms

Image from Andrew Fitzpatrick (University of Aberystwyth)
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Questions?
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