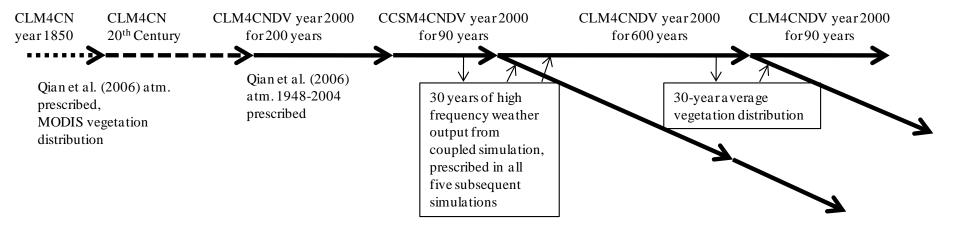
Evaluation of the new CNDV option of the Community Land Model:

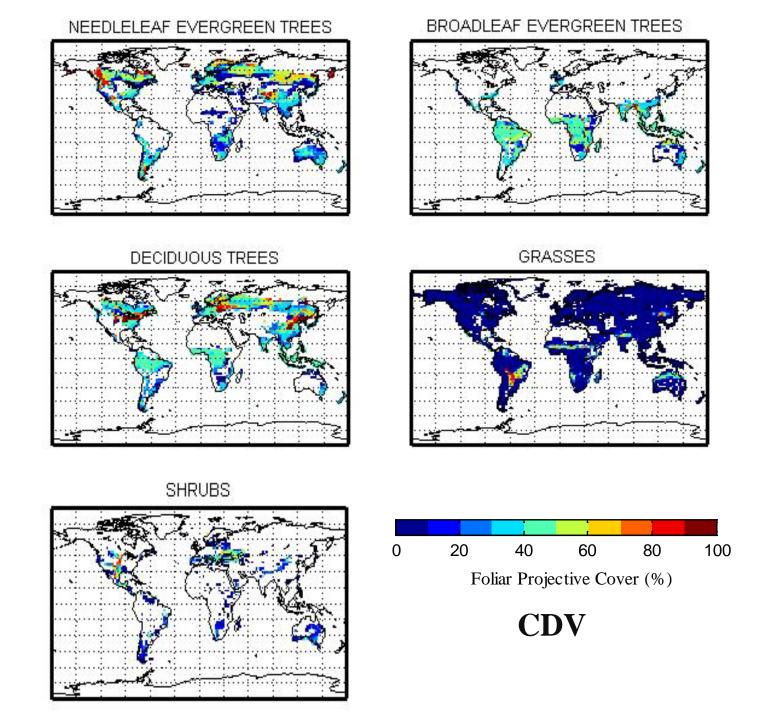
Effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability

C. Kendra Gotangco Castillo Purdue University

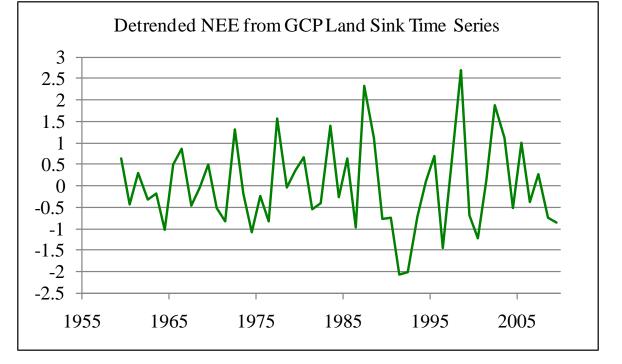

Sam Levis NCAR

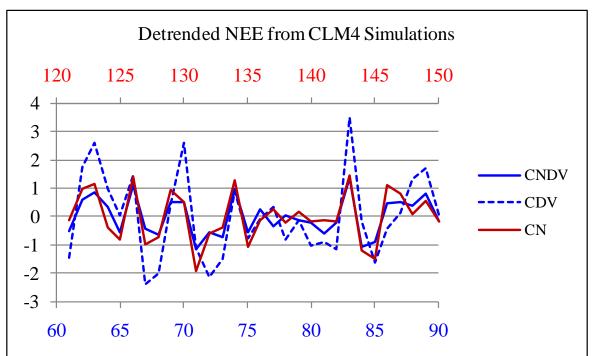
Prognostic C-N with Dynamic Vegetation

- CNDV updates the biogeography annually, but now interpolated to the ~hourly time step for consistency with CLM.
- CNDV changes the CN framework for annual processes of light competition, establishment, and survival as they pertain to the calculations of PFT cover and population density.
- CNDV incompatible with managed vegetation and transient land use option.


Evaluation

- Compare the simulated vegetation cover against the satellite observations used in CLM4SP.
- Assess the relative importance of interactive nitrogen versus interactive biogeography in present-day equilibrium simulations.
 - 3 Simulations: CNDV vs. CDV vs. CN
 - Compare (1) annual means
 - (2) interannual variability
 - (3) seasonal variability
 - Compare against other obs/data (GCP, Globalview)


Spin-up Methodology


BROADLEAF EVERGREEN TREES NEEDLELEAF EVERGREEN TREES **DECIDUOUS TREES GRASSES SHRUBS** 0 20 40 60 80 100 Foliar Projective Cover (%) **CNDV**

Annual Means and Interannual Variability

- Interactive nitrogen and the dynamic vegetation introduce degrees of freedom to the model that tend to buffer response to inter-annual environmental variability.
- N-cycle reduces both the means and standard deviations of most biogeochemical and biophysical variables more than DV.

	CNDV		CDV		CN	
		Std.		Std.		Std.
	Mean	Dev.	Mean	Dev.	Mean	Dev.
NEE (- sink) (PgC/year)	-0.16	0.77	-0.14	1.58	-0.17	0.96
NBP (+ sink) (Pg/C/year)*	0.16	0.77	0.14	1.58	0.17	0.96
NEP (PgC/year)**	5.22	0.54	9.01	1.07	3.39	0.79
NPP (PgC/year)***	45.24	0.63	57.21	1.24	47.88	0.82
GPP (PgC/year)	127.69	1.20	162.93	2.30	135.52	1.43
Autotrophic Respiration						
(PgC/year)	82.45	0.69	105.73	1.41	87.64	0.85
Heterotrophic Respiration						
(PgC/year)	40.02	0.32	48.19	0.33	44.49	0.38
Total Ecosystem Carbon						
(PgC)	1877.70	2.71	2217.23	4.08	1526.26	2.66

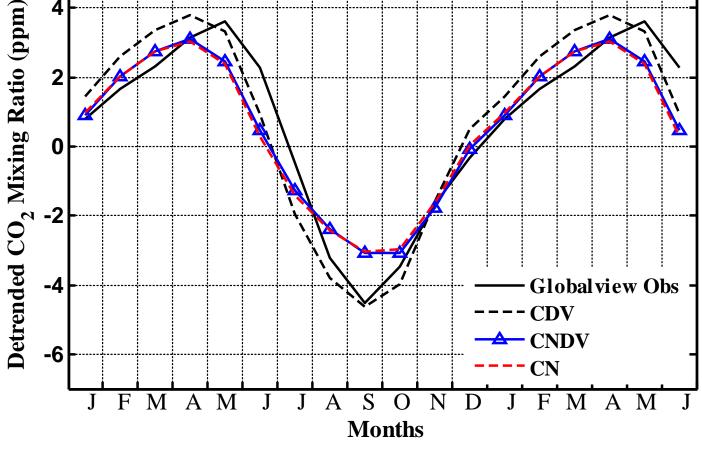
	Impact on	the Mean	Impact on St. Dev.		
	Interactive	Dynamic	Interactive	Dynamic	
	nitrogen	vegetation	nitrogen	vegetation	
NEE (- sink) (PgC/year)	ND	ND		-	
NBP (+ sink) (Pg/C/year)	ND	ND		-	
NEP (+ sink) (PgC/year)	-	+		-	
NPP (PgC/year)		-		_	
GPP (PgC/year)		_		_	
Autotrophic Respiration (PgC/year)		-		_	
Heterotrophic Respiration (PgC/year)		-	_		
Total Ecosystem Carbon (PgC)	_	+	_	+	

CDV to CN to CDV to CN to CNDV CNDV CNDV

	CNDV		CDV		CN	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
All-Sky Albedo (%)	28.33	0.15	27.76	0.14	28.32	0.14
Net Radiation (Wm ⁻²)	73.39	0.23	75.11	0.30	73.67	0.24
Sensible Heat (Wm ⁻²)	28.53	0.46	29.12	0.52	28.05	0.49
Latent Heat (Wm ⁻²)	44.30	0.42	45.45	0.42	45.05	0.44
Canopy Transpiration (Wm ⁻²)	20.80	0.15	24.14	0.26	22.14	0.17
Canopy Evaporation (Wm ⁻²)	7.19	0.14	8.29	0.15	7.56	0.14
Ground Evaporation (Wm ⁻²)	16.31	0.39	13.02	0.41	15.34	0.36
Total Leaf Area Index	2.10	0.03	2.36	0.04	2.33	0.04
Total Stem Area Index	0.433	0.01	0.461	0.01	0.428	0.01

	Impact or	n the Mean	Impact on St. Dev.		
	Interactive	Dynamic	Interactive	Dynamic	
	nitrogen	vegetation	nitrogen	vegetation	
All-Sky Albedo (%)	+	ND	+	+	
Net Radiation (Wm ⁻²)		-		-	
Sensible Heat (Wm ⁻²)	-	+		-	
Latent Heat (Wm ⁻²)		-	ND	-	
Canopy Transpiration (Wm ⁻²)		-		-	
Canopy Evaporation (Wm ⁻²)		_	-	ND	
Ground Evaporation (Wm ⁻²)	++	+	-	+	
Total Leaf Area Index		<u>-</u>	_	_	
Total Stem Area Index	-	+	ND	ND	

CDV to CNDV CN to CNDV


CDV to CNDV

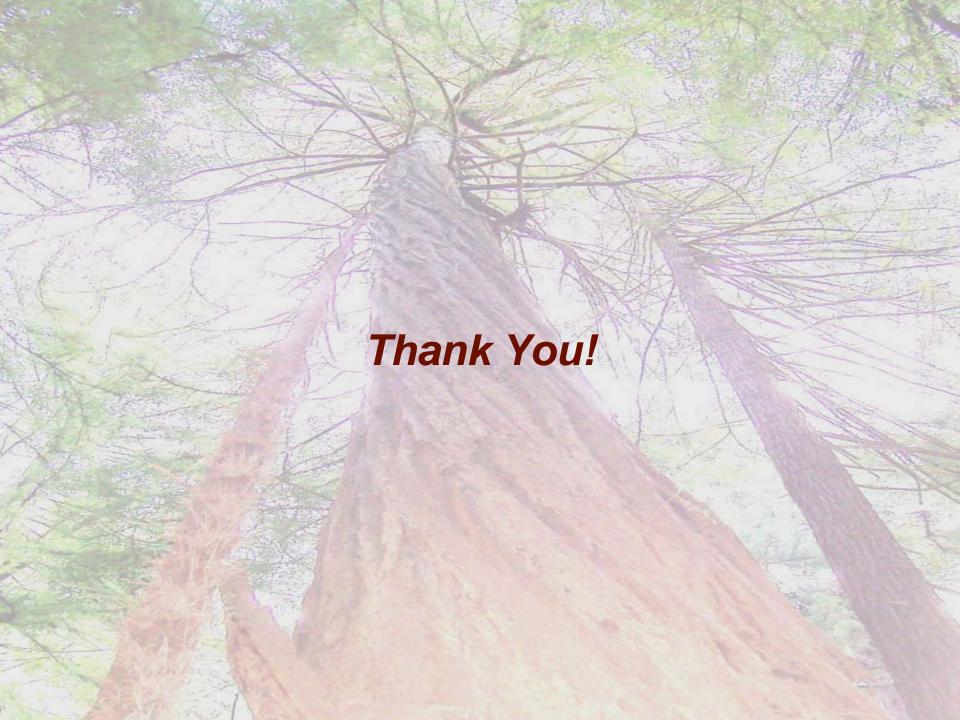
CN to CNDV

Seasonal Variability

- CDV performs better in capturing peak carbon uptake; the interactive N-cycle degrades peak CO₂ uptake during the growing season but improves CO₂ emissions during other months compared to CDV.
- The overestimated tree cover in CDV reduces overall seasonal variability of albedo and latent heat flux.
- Addition of DV reduces seasonal variability in TLAI.

Average Seasonal Cycle at Kumukahi

End of the 20th century seasonal CO₂ cycles compared to observations from GLOBALVIEW monitoring stations in Kumukahi (19.5°N, 154.8°W).


Summary

- CNDV produces reasonable vegetation distribution, and is consistent in performance whether coupled only to CLM4 in the offline mode or to the full CCSM4 suite.
- No configuration consistently performs best across the board in simulating annual or monthly means compared to other data, observations.
- The N-cycle and DV mostly reduce the annual means and inter-annual variability; but reduction from interactive N-cycle is greater.

Summary

 In equilibrium simulations, CNDV acts as a "buffer" or "regulator" of inter-annual variability compared to the CDV or CN configurations.

 The role of interactive nitrogen and dynamic vegetation may manifest differently in fullycoupled transient simulations that allow for interaction with climate.

