

Community Land Model: Update on Progress, Plans, and Results from CCSM4 Simulations

David Lawrence

NCAR Earth System Laboratory

with input from lots of LMWGers

NCAR is sponsored by the National Science Foundation

Terrestrial Sciences Section Hard at work

Figure 1: Lawrence et al., Journal Advances Modeling Earth Systems, 2011

- The CCSM4 land simulation, 1850-2005: Assessment of surface climate and new capabilities (submitted)
 - Lawrence D et al.
- The biophysical and biogeochemical impacts of landcover and land use change over 20th and 21st centuries
 - Lawrence P et al.
- Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios(submitted)
 - Oleson
- Permafrost in CCSM4
 - Lawrence D et al.

- Mean and variability of the carbon cycle in CESM1
 - Lindsay et al.
- The transient carbon cycle response in CESM1
 - Lindsay et al.
- An assessment of terrestrial carbon and nitrogen cycling in CESM1
 - Thornton et al.
- Dynamic Vegetation in CESM1
 - Castillo et al.
- Land-atmosphere interactions across several generations of CAM/CLM
 - Lawrence D et al.
- Crops in CESM1
 - Levis et al.

CCSM4 data

- 1850 control and 20th century and RCPs ensembles
 - All simulations: CLM is fully active with CN on and transient land cover change, aerosol and nitrogen deposition
 - Data posted on Earth System Grid (ESG) on or about May 1, 2011

Community Earth System Model

CESM 1.0 EXPERIMENTS / DIAGNOSTICS

CESM1.0 Home Page

Stand-Alone Diagnostics CAM4.0 CAM5.0 CLM4.0 CICE4.0 POP2

Note that although CESM1.0 supersedes CCSM4.0, users can run equivalent CCSM4.0 experiments from the CESM1.0 code base. Also note that the CCSM4.0 experiments below are equivalent to running CESM1.0 (CAM4).

Search advance

=

Note that all current CESM release codebases (e.g. cesm1_0, cesm1_0_1 or cesm1_0_2) can also reproduce the climates shown below.

If you still have questions after reviewing the details of the model runs below, it is recommended that you contact the relevant CESM Working Group Liaison.

Run Description	Diagnostics			Length of Run Diagnostics			
CESM1 (BGC) Prognostic CO2 1° Pre-Industrial Control (b40.coup_carb.004) Res: 1° atm/land, 1v6 ice/ocn Years: 1-1000 Data Location: ESG (years 351-380) Details	351-380 w/observations	Atm	Ice	Land	Ocean	CCR	Ocean Timeseries
	351-370 - CCSM4 1º Pre-Industrial Control	Atm	Ice	Land	Ocean		
CESM1 (BGC) Prescribed CO2 1° Pre-Industrial Control (b40.prescribed_carb.001) Res: 1° atm/land, 1v6 ice/ocn Years: 1-1000 Data Location: ESG (years 151-180) Details	151-180 w/observations	Atm	Ice	Land	Ocean	CCR	Ocean Timeseries
	151-170 - CCSM4 1º Pre-Industrial Control	Atm	Ice	Land	Ocean		
CESM1 (CAM5.1) 1º Pre-Industrial Control (b40_1850_1d_b08c5cn_138j) Res: 1º atm/land, 1v6 ice/ocn Years: 1-320 Data Location: Details	230-249 w/observations	Atm	Ice	Land	Ocean	CCR	Ocean Timeseries

Community Earth System Model

CESM 1.0 EXPERIMENTS / DIAGNOSTICS

CESM1.0 Home Page

Stand-Alone Diagnostics CAM4.0 CAM5.0 CLM4.0 CICE4.0 POP2

Note that although CESM1.0 supersedes CCSM4.0, users can run equivalent CCSM4.0 experiments from the CESM1.0 code base. Also note that the CCSM4.0 experiments below are equivalent to running CESM1.0 (CAM4).

Search advance

Note that all current CESM release codebases (e.g. cesm1_0, cesm1_0_1 or cesm1_0_2) can also reproduce the climates shown below.

If you still have questions after reviewing the details of the model runs below, it is recommended that you contact the relevant CESM Working Group Liaison.

Run Description		Diagnostics				Length of Run Diagnostics		
CESM1 (BGC) Prognostic CO2 1° Pre-Indust Control (b40.coup_carb.004) Res: 1° atm/land_tu5 inc/con	rial	351-380 w/observations	Atm	Ice	Land	Ocean		
Years: Case Name: b40.coup_carb.004 Data Lo Details CMIP5 ID: 5.1 Compset: B1850BPRP		351-370 - CCSM4 1º Pre-Industrial Control	Atm	Ice	Land	Ocean	CCR	Ocean Timeseries
CESM1 Resolution: 0.9x1.25_gx1v6 Control Initial Conditions: year 351 (b40.pre Start/End Dates: 12/24/09, 12/17/10	ial	151-180 w/observations	Atm	Ice	Land	Ocean		
Res: 1° Data Release Date (Full): 8/1/11 Years: 1 1000 Data Location: ESG (years 151-180) Details		151-170 - CCSM4 1º Pre-Industrial Control	Atm	Ice	Land	Ocean	CCR	Ocean Timeseries
CESM1 (CAM5.1) 1° Pre-Industrial Control (b40_1850_1d_b08c5cn_138j) Res: 1° atm/land, 1v6 ice/ocn Years: 1-320 Data Location: Details		230-249 w/observations	Atm	Ice	Land	Ocean	CCR	Ocean Timeseries

T_{air}: RMSE and Annual Mean Bias (CCSM4 vs CCSM3)

Land temperature anomalies from 1961-1990

Total Land Water Storage (CCSM vs GRACE)

Ground Water

Black carbon snow forcing in CCSM4

Species	Pre-Industrial	Present				
opecies	(1850-1869) (W m ⁻²)	(1986-2005) (W m ⁻²)				
Black carbon	0.023	0.037				
Mineral dust	0.046	0.036				
Combined effect	0.075	0.083				

LAI and LAI change (2080-2099 minuse 1980-1999) in CCSM4

Permafrost extent and active layer thickness

Ground Water

CCSM4 – CCSM3 (St. Dev.)

Despite increase in LAI variability (by definition) lower variability in LH and T_{air} due to wetter model

Planning supplementary 1850 control and 20th century simulation with prescribed MODIS LAI

- Bug fixes, model version used for CESM1 (CAM5) simulations for CMIP5
- CLM4
 - Crops (spring wheat, corn, soybean)
 - Irrigation
 - Support for Flux Tower Site simulations (PTCLIM)
 - PFT physiology and RTM directional file converted to netCDF
 - Parallel I/O
- GLC (Greenland ice sheet) Compsets
- **POP**, **CICE** ???

- Crops and irrigation

- Connect crops and irrigation
- Fertilization and other updates, expand crop PFTs
- Revised cold region hydrology
 - Impedance factor, perched water table
 - Surface water store (prognostic wetlands)
 - New snow cover fraction param; separate surface energy calc for snow covered, surface water, and bare ground surfaces
 - 2-way grid cell RTM interactions (flooding)
- Canopy physiology
 - Update GPP (Bonan et al. 2011); multilayer canopy radiation and photosynthesis, leaf optimization

- Improved fire algorithm including human triggers and suppression
 - Kloster et al., *Biogeosciences*, 2010
- Methane emissions model
 - Based on Riley et al. 2011; with options from Meng et al. 2011 (?)
- Revised lake model
 - New lake physics and lake area dataset
- Dynamic landunits
 - Land unit transitions: e.g., glacier to vegetated, vegetated to crop, vegetated to urban, etc.

- Software engineering
 - High resolution: new input datasets (?); update tools mksrfdat, interpinic
 - Simplified soil C and N pools coding structure
 - Move CN (and other) model parameters to input file
 - Model output: by default PFT/column level output
 - Unstructured grid

- Capability introduced to run with non lat/lon or logically rectangular grids
 - Leverage new ESMF parallel offline regridding capability for this work
 - *New* surface dataset generation tool for non lat/lon grids (faster)
 - New CLM code support to deal with non lat/lon surface datasets and generate appropriate history files
 - New offline post-processing utility to map non lat/lon history files to 2d for visualization
- New ways to run CLM
 - Regionally refined grids (e.g. over USA)
 - CAM/HOMME cubed sphere grid with and without regional refinement
 - "Collection" of tower sites in parallel
 - Catchment grid

- Soil carbon and nitrogen biogeochemistry
- Ecosystem demography, temporal response to disturbance
- Sub-surface hydrological processes
- Sub-grid soil moisture and snow heterogeneity
- 3-D canopy radiation
- Integrated Assessment Modeling
- Water (and carbon?) Isotopes
- N₂O emissions
- Phenology
- Phosphorous
- Data assimilation
- Riverine transport of nutrients and sediments

CESM Tutorial: August 1-5, 2011 NCAR, Boulder, CO

- Lectures on simulating the climate system
- Practical sessions on running CESM, modifying components, and analyzing data
- Targeted at graduate student level
 - Max 80 students with financial support for up to 40 students
 - Acceptance criteria:
 - Preference given to early career graduate students, though we will aim for a mix of graduate students, postdocs, and early career research scientists and faculty
 - Project descriptions and their fit with broader CESM goals and activities
 - Balance attendees across institutions
- How to Apply:
 - Application website online at www.cesm.ucar.edu in early January, 2011
 - Application deadline: March 25, 2011
 - Accepted students informed by late April
 - Questions should be directed to Dave Lawrence (dlawren@ucar.edu)

WCRP OPEN SCIENCE CONFERENCE CLIMATE RESEARCH IN SERVICE TO SOCIETY

Session C10: Land, Water and Climate (conveners: D. Lawrence, P. Kabat) Abstract deadline April 30, 2011

> 24–28 October 2011, Denver, Colorado, USA conference2011.wcrp-climate.org

