Experiments and Analyses with High Resolution Versions of CCSM

Frank Bryan NCAR/CGD

Completed and Ongoing Experiments

- LLNL Grand Challenge Runs
 - Analysis of frontal scale air-sea interaction
- PetaApps Control Runs
 - Analysis of low-frequency climate variability
- 0.5° CAM5 AMIP-type forced runs
 - Sensitivity of air-sea interaction processes to SST resolution and model formulation
- 0.5° atm/0.1° ocn CO₂ ramp experiment
 - resolution dependence of climate sensitivity and response
- CORE forced 0.1°/62 level ocean experiments

Frontal-Scale Air-Sea Interaction

Bryan et al (2010) J. Climate, 23, 6277-6291

- Local atmosphere-ocean coupling processes at ocean mesoscale
- Observational (primarily remote sensing) and regional model studies have contrasted frontal- scale with basin-scale air sea interaction processes:
 - Basin-scale: high winds associated with enhanced turbulent fluxes, entrainment, Ekman transport leading to cool SSTs
 - Frontal-scale: Warm SSTs force lower atmospheric response leading to higher winds

Correlation High-Pass SST w/ |U_{srf}|

CCSM 0.5° atm / 1° ocn

CCSM 0.5° atm / 0.1° ocn

0.2

0.4

0.6

0.8

0.9

-0.2

-0.9

-0.8

-0.6

-0.4

CAM5 0.5° w/ 0.25° SST

Seasonal Mean Wind Stress (color) Vs. SST(contour)

Regional SST vs Stress Regressions

Tropospheric Response along 40°S

0.00

0.20

Forcing of Low-Level Convergence

• For linearized momentum balance in PBL:

$$-fV = -\frac{\partial P}{\partial x} - \varepsilon U$$
$$fU = -\frac{\partial P}{\partial y} - \varepsilon V$$

• Convergence ~ Laplacian pressure

$$-\nabla \bullet \vec{U} \approx \frac{\varepsilon}{\varepsilon^2 + f^2} \nabla^2 P$$

Minobe, Takatama (2008,2010)

Lapalacian Pressure (color) vs. Convergence (contours)

Winter Mean Precipitation

Planetary Scale Impact on Energy Balance: Correlation High-Pass SST vs. All Sky Albedo

Low Frequency Variability

- Do the local frontal-scale interactions influence basin- to global-scale modes of variability?
- Do new modes of variability arise when fluids on both sides of the air-sea interface are turbulent?

Correlation Annual Avg. SSH vs. LHFLX

0.5atm/1.0ocn

REDACTED

REDACTED

0.5atm/0.1ocn

Timeseries Annual SSH vs. LHFLX

Agulhas 0.5atm/0.1ocn

0.5atm/1.0ocn

 SAF

REDACTED

REDACTED

Malvinas

Kuroshio

GS

Planned CAM5 Experiments

- Sensitivity to Scales Resolved in SST
 - Reproduce Minobe et al experiments w/ CAM5
- Sensitivity to Boundary Layer Parameterization
 - Holtslag-Boville vs. Bretherton-Park
 - Stability function
- More quantitative low-level momentum budgets

Sensitivity to Scales in SST

Planned Forced Ocean Experiments

(Experiments running as "C" comp-set through coupler)

- Vertical resolution
 - 62 level vertical grid (from 1° model)
- Sub-grid scale closure
 - Sub-mesoscale parameterization (Fox-Kemper et al)
 - Anisotropic GM
- Windstress surface current coupling
 - Damping mechanism for excessive EKE?