Kuroshio Pathways in CCSM3: The Large Meander

> December 9, 2010 Liz Douglass

Outline

- The Large Meander (LM)
 - Definition
 - Model/data comparison
- Causes and effects of the LM
 - Transport changes
 - Shear changes
 - Trigger meander
- More on the trigger meander
- Conclusions

What is the Large Meander?

- The pathway of the Kuroshio as it goes past Japan has two main states: "Large Meander" and "non-Large meander".
- The different states persist for years, and the switch is abrupt (bimodal system)

Large Meander - observed

A large meander formed in 2004, as observed by satellite altimetry (sea surface height). This LM only lasted a year – shorter than average. It is also the ONLY large meander since altimetry data became available in fall of 1992.

Large Meander - modeled

Years 30-35 Years 40-45 140 140 40N 40N 120 120 100 100 80 80 35N 35N 60 60 40 40 30N 30N 20 20 0 0 -20 20 25N 25N 130E 135E 140E 145E 150E 130E 135E 140E 145E 150E

 CCSM3 model: 1/10°, 42 vertical levels. Run for 100 years with "normal year forcing" – same atmosphere every year. This eliminates large-scale atmospheric effects.

Realistic-looking LM develops, and lasts for several years.

Model-Data comparison: shape

 LM in the model "evolves" initial shape is similar to observations, but changes over time

Model-data comparison: time

- Path length is the metric we use to define what is and is not a large meander – path length is longer in LM state
- Time scale might be different in model vs.
 observations (note model time series is 100 years, observations cover 13 years)

Possible causes of LM

- Changes in wind stress (large scale)
 Not in this model!
- Changes in upstream transport
- Changes in velocity structure (shear)
- Interaction with eddies ("trigger meander")

Transport

- Initial impression: increases in transport in all three locations happen during the large meander
- However, on further analysis, transport changes lag behind the large meander – response rather than cause

Velocity Shear

- Near surface, shear increases during LM; at middepth, shear decreases
 - LM affects the structure of the velocity profile
- Again looks more like effect than cause

Vertical shear of velocity

- Small eddy comes \bigcirc around the bottom of Kyushu, travels up coast, develops into Large meander
- Example (year 108) \mathbf{O} shown: similar examples found for each LM during 100 year time series
- Does an eddy like this always cause an LM?

30N

28N

130E

135E

140E

28N

130E

135E

140E

145E

145E

Identifying the Trigger meander

Use distance of Kuroshio from coast as a metric

- We see a "spike" in this distance before each LM (red stars in plot)
- There are a lot of non-LM-causing spikes as well

Identifying the Trigger meander

- Power spectrum analysis: red is the full time series, green is with large meanders (and thus the main low-frequency signal) removed.
- Peaks indicate dominant period of 1 year and 2 years.
- Most trigger-like meanders do NOT trigger large meanders
- Necessary but not sufficient!

Conclusions

- Large Meander exists south of Japan, both in observations and in the model
- Shape and timing are similar to observations, but could be better
- Transport and vertical shear change as a result of Large Meander
- An eddy traveling up the coast seems to trigger the Large Meander – but not every similar eddy has the same result.

Questions?