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POP Setup

I 200 year spinup with NYF Core v2 with corrections

I Subsequent 1948-2006 IAF Core v2 with corrections

I Ensemble initialized about Jan 1, 1990

I Default 6 mth. weak salinity restoring

I Ensemble size of 20

I Assimilation of T & S
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Diagnosis of Initial POP-DART Runs
Jan-Mar 1990; adaptive inflation (1.0,0.2)

I 20 member ensemble run. No assim. I 20 member ensemble run with assim.

I Anomaly wrt Levitus

I Very slight improvement (≈ 3%)
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Diagnosis of Initial POP-DART Runs
Jan-Mar 1990; adaptive inflation (1.0,0.2)

I Red: Single Free; Blue: Ensemble Free; Green: POP-DART

I 20 member ensemble

I Slight decrease of bias with assimilation (Blue-Green)

I 5% in N. Atl. vs. 3% globally

I Improvements are lower-bounds since computed with priors
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Diagnosis of Initial POP-DART Runs
Jan-Mar 1990; adaptive inflation (1.0,0.2)

I 20 member ensemble run. No assim. I 20 member ensemble run with assim.

I Maxima large for the 6 mth. weak salinity restoring.

I Significant differences in MOC (intensified with assim.)

I Implies significantly different subsurface T and/or S
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Are the assimilations working?
Jan-Mar 1990; adaptive inflation (1.0,0.2)

I Observation space of a portion of N. Atlantic below 100m

I XBT Temperatures: About 40 a day

I Blue Symbols: Ensemble run with no assim.

8 / 23



Are the assimilations working?
Jan-Mar 1990; adaptive inflation (1.0,0.2)

I Priors and posteriors same after 2 days
I Previously noted differences at upto 3 months due to changes

over first 2 days!
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Two Main Points of This Talk
Atm. DA vs. Oceanic DA; Instabilites and Error Covariance

I There are differences between atmospheric data
assimilation for short-range (weather)
predictions and ocean data assimilation for
long-range (climate) predictions.

I Taking into account flow-dependent forecast
error-covariance may improve effectiveness of
ocean data assimilation.
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Data Assimilation and Dynamical Time Scales

I Predictability comes from large scales.
I Ocean dynamics of large scales is slow.

I Topography at 0.1o is not used in 1o ocean model.
I Parameterizations used in 0.1o resolution runs

are not used in 1o simulations.
I Suggests filtering of observations commensurate with

resolution of simulation.
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First Step: Try to Estimate Mean Ocean State

I There are simple dynamical objects underlying chaotic
dynamical behavior.

I Time averages of chaotic trajectories are related to underlying
unstable fixed points.

I Rather than hit ocean model with obs. frequently, repeatedly
use averaged/filtered obs to convey information about average
state rather than instantaneous state.

I Consistently average forcing as well.
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Data Assimilation and Uncertainty

I DA is a statistical procedure of blending 2 data
streams—background and observations—depending on their
respective uncertainities.

I Quality of DA determined by the accuracy of the estimate of
background covariance (Pb).

I One of the data streams comes from a dynamical model.

I Ensemble DA considers an ensemble of model forecasts to
estimate Pb.

I Phase space dimension enormous, but can afford only a few
ensemble members. So assume forecast errors lie in a local
and low dimensional subspace. (i.e., rank of Pb is small)

I This is the justification for localization.
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Instability and Error Covariance
Can a knowledge of dynamical instabilities help in DA?

I Adaptive Inflation in DART is statistics-based.

I Reduce dimension of subspace further by considering
dominant unstable directions (dynamical information).

I Better following instabilities may be a recipe for better
estimating background covariance.

I Instabilites bring coherence to otherwise Monte Carlo nature
of ensemble simulations.

I Add info. about unstable directions in DART using Bred
Vector and ETKF-based schemes
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Lorenz ’96 Model Setup

I
dxj

dt
= (xj+1 − xj−2)xj−1 − xj + F ; j = 1, . . . , 40

I Well-observed and poorly-observed regions

I An assimilation every 10 timesteps if not specified otherwise.

I Model error through different forcing for
observations (F=8; more chaotic) and
assimilation runs (F=5; sluggish)

I Larger F ⇒ larger mean and variability
I Diff. F for obs. and model run ⇒ bias
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Highly Localized (c=0.02); Std. adaptive inflation
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Inst. field nudged to time avg. obs!
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Highly Localized (c=0.02); ETKF-based scheme
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Inst. field not nudged to time avg. obs
smaller errors; lower uncertainity
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Reduced Localization (c=0.2); Std. adaptive inflation
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Bias not being corrected even where there is data
large error; low correlation
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Reduced Localization (c=0.2); ETKF-based scheme
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Better bias correction where there is data; reduced error
better correlation; but no bias correction where there is no data
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Reduced Localization (c=0.2)
Blowup with std. adaptive inflation at 142 cycles
Assimilation every timestep. Considering averages before blowup
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Reduced Localization (c=0.2)
Stabilized with ETKF-based scheme
Assimilation every timestep.

0 10 20 30 40
Location

0.0

0.5

1.0

1.5

SE
 o

f T
im

e 
A

vg
.

0 10 20 30 40
Location

0.0

0.1

0.2

0.3

0.4

En
se

m
bl

e 
Sp

re
ad

0 500 1000 1500 2000
Assimilation Cycle

-1.0

-0.5

0.0

0.5

1.0

C
or

r(
Ti

.A
vg

.,T
r.A

vg
)

0 10 20 30 40
Location

-2
0
2
4
6
8

10

In
sta

nt
.  

&
 A

vg
.

0 10 20 30 40
Location

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e 
A

vg
.

Effect of reduced localization is seen in terms of trying to infer
state of the system in poorly observed region
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Summary

I After some missteps and false starts, we have gotten around
to getting POP and DART work with our scripts. But we still
have problems with some of the setups that we like to run.

I Even with short runs, collapse of ensemble spread
is a serious problem.

I We propose to use a dynamics-based alternative to
statistics based inflation.

I By repeatedly assimilating averaged obs, we propose to obtain
the mean state of the ocean as a first step; later follow up
with seasonally and interannually varying state estimation.

23 / 23



Summary

I After some missteps and false starts, we have gotten around
to getting POP and DART work with our scripts. But we still
have problems with some of the setups that we like to run.

I Even with short runs, collapse of ensemble spread
is a serious problem.

I We propose to use a dynamics-based alternative to
statistics based inflation.

I By repeatedly assimilating averaged obs, we propose to obtain
the mean state of the ocean as a first step; later follow up
with seasonally and interannually varying state estimation.

23 / 23



Summary

I After some missteps and false starts, we have gotten around
to getting POP and DART work with our scripts. But we still
have problems with some of the setups that we like to run.

I Even with short runs, collapse of ensemble spread
is a serious problem.

I We propose to use a dynamics-based alternative to
statistics based inflation.

I By repeatedly assimilating averaged obs, we propose to obtain
the mean state of the ocean as a first step; later follow up
with seasonally and interannually varying state estimation.

23 / 23



Summary

I After some missteps and false starts, we have gotten around
to getting POP and DART work with our scripts. But we still
have problems with some of the setups that we like to run.

I Even with short runs, collapse of ensemble spread
is a serious problem.

I We propose to use a dynamics-based alternative to
statistics based inflation.

I By repeatedly assimilating averaged obs, we propose to obtain
the mean state of the ocean as a first step; later follow up
with seasonally and interannually varying state estimation.

23 / 23


	Motivation
	POP-DART
	Data Assimilation


