Perturbed-Physics Experiments with CICE running with CAM4 + Slab Ocean Model

presented by Curt Covey PCMDI / Lawrence Livermore National Laboratory* CESM Polar Climate Working Group meeting NCAR, February-March 2011

* Work performed at LLNL under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

... and showing results from:

- Scott Brandon (LLNL Weapons and Complex-Integration)
- David Domyancic (LLNL Computing / Applications, Simulations and Quality Division)
- Gardar Johannesson (LLNL National Security Engineering Division)
- Steve Klein (LLNL PCMDI / Atmospheric, Energy and Earth Division)
- Richard Klein (LLNL Weapons and Complex-Integration, group leader for Verification and Validation; and UC Berkeley Astronomy Department)*
- Donald Lucas (LLNL Atmospheric, Energy and Earth Division)
- John Tannahill (LLNL Global Security Computing)
- Yuying Zhang (LLNL PCMDI / Atmospheric, Energy and Earth Division)

* R. Klein is PI for LLNL's Strategic Initiative project "The Advance of UQ Science with Application to Climate Modeling, Inertial-Confinement Fusion Design, and Stockpile Stewardship Science."

NB: Sea ice results are very preliminary – runs still in progress. All opinions herein are Curt's, not necessarily everyone's in the project.

Summary of Perturbed-Physics Experiments with CAM4 run in AMIP Mode*

- 28 uncertain input parameters identified ("expert elicitation")
- The challenge: if we consider 3 possible values for each,

 $3^{28} = 22, 876, 792, 454, 961 > 2 \times 10^{13}$

- How to sample? Choice of input-parameter variations? See AMWG and Breckenridge talks by Lucas, Brandon, Tannahill.
- - Bigger than CMIP3 / IPCC AR4 database of climate model output
 - Needs similar worldwide accessibility to be fully analyzed
- * Note earlier PPEs of CAM3 in both AMIP and SOM mode by:
- C. Jackson et al., J Climate 21: 6698 (2008)
- B. Sanderson, J Climate (in press)

Summary of Perturbed-Physics Experiments with CAM4 run in AMIP Mode (continued)

Result from default input-parameter values

CICE contributes 7 additional uncertain input parameters:

	name	low	default	high	description	.F90 subroutine
1	dt_mlt_in	0.10	1.50	1.80	Temperature at which ice melt begins [°C]	ice_shortwave
2	r_ice	-1.9	0.0	1.9	Sea-ice albedo tuning parameter [s.d. units]	ice_shortwave
3	r_pnd	-1.9	0.0	1.9	Ponded-ice albedo tuning parameter [s.d. units]	ice_shortwave
4	r_snw	-1.9	1.5	1.9	Snow albedo tuning parameter [s.d. units]	ice_shortwave
5	rsnw_melt_in	500.0	1500.0	2000.0	Maximum snow grain radius [µm]	ice_shortwave
6	ksno	0.10	0.30	0.35	Thermal conductivity of snow [W / (m °C)]	ice_therm_vertical
7	mu_rdg	3.0	4.0	5.0	With ice thickness, gives e-folding scale of ridges [m^(1/2)]	ice_mechred

Our thanks for extended conversations with the CESM PCWG and especially Dave Bailey, Cecilia Bitz, Bruce Breigleb, Charles Jackson, and Rich Neale. *Note:* We might be able to test all 2187 possible low / default / high combinations,

but that would take us off the main path of our project.

First Test PPE with CAM4+SOM+CICE:

Second Test PPE: Kept CICE input parameters at default values. Same basic result. **Warning**: All SOM tests to date use 1°-resolution ocean heat-transport forcing with 1°-resolution CAM4.

Third Test PPE: Kept CAM4 input parameters at default values.

Q: Can polar bears survive all combinations of "reasonable" CICE input-parameter values?

How to avoid freezing the model Earth in PPEs? Three possibilities:

- 1. <u>Pre-filtering</u>: Avoid input-parameter combinations likely to freeze Earth. But how do we know what they are in advance? Stick with combinations already AMIP-tested, or interpolate in 36 dimensions.
- 2. <u>Kill switch</u>: Check each run early, discard if warning signs appear (e.g. if planetary albedo > 0.32).
- <u>Traditional "flux correction" for each input-parameter</u> <u>combination</u>: Adjust the prescribed ocean heat flux to whatever value keeps SST within reasonable bounds. But this will violate conservation of energy (globally averaged heat flux out of oceans > 10 W / m2 in most cases). Down-weight unrealistic cases later?

Your advice is welcome!