Climate, Ocean and Sea Ice Modeling Program

Melt Ponds in CICE

Elizabeth Hunke

March 1, 2011

Ponds in CICE

(1) default shortwave parameterization includes melt ponds implicitly through reduced albedo
(2) default pond description in the delta Eddington radiation scheme
(3) the CCSM4 pond scheme
submitted to CCSM4 special issue of J. Climate

Ponds in CICE

(1) default shortwave parameterization includes melt ponds implicitly through reduced albedo
(2) default pond description in the delta Eddington radiation scheme
(3) the CCSM4 pond scheme
submitted to CCSM4 special issue of J. Climate
(4) University College London's approach

Incorporation of a physically based melt pond scheme into the sea ice component of a climate model
Daniela Flocco, ${ }^{1}$ Daniel L. Feltham, ${ }^{1,2}$ and Adrian K. Turner ${ }^{1}$
Received 12 June 2009; revised 12 February 2010; accepted 13 April 2010; published 10 August 2010.

Ponds in CICE

(1) default shortwave parameterization includes melt ponds implicitly through reduced albedo
(2) default pond description in the delta Eddington radiation scheme
(3) the CCSM4 pond scheme
submitted to CCSM4 special issue of J. Climate
(4) University College London's approach

RAD Ponds

- "retained" melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$

RAD Ponds

- "retained" melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$
- refreezing: $V_{p}=V_{p} e^{-0.005\left(-2-T_{s t c}\right)}$ for $T_{s f c}<-2^{\circ}$

RAD Ponds

- "retained" melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$
- refreezing: $V_{p}=V_{p} e^{-0.005\left(-2-T_{s t c}\right)}$ for $T_{s f c}<-2^{\circ}$
- area

$$
a_{p}=\sqrt{V_{p} / 0.8}<1
$$

depth
$h_{p}=0.8 a_{p}<0.9 h_{i}$
volume

$$
V_{p}=a_{p} h_{p}
$$

RAD Ponds

- "retained" melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$
- refreezing: $V_{p}=V_{p} e^{-0.005\left(-2-T_{s t c}\right)}$ for $T_{s f c}<-2^{\circ}$
- area $a_{p}=\sqrt{V_{p} / 0.8}<1$
depth
$h_{p}=0.8 a_{p}<0.9 h_{i}$
volume
$V_{p}=a_{p} h_{p}$
- snow

$$
a_{p}=\left(1-h_{s} / 0.03\right) a_{p}
$$

RAD Ponds

- "retained" melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$
- refreezing: $V_{p}=V_{p} e^{-0.005\left(-2-T_{s t c}\right)}$ for $T_{s f c}<-2^{\circ}$
- area $\quad a_{p}=\sqrt{V_{p} / 0.8}<1$ depth $\quad h_{p}=0.8 a_{p}<0.9 h_{i}$
volume
$V_{p}=a_{p} h_{p}$
- snow

$$
a_{p}=\left(1-h_{s} / 0.03\right) a_{p}
$$

- transport V_{p}, a_{p}

TOPO Ponds

- retained melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$

TOPO Ponds

- retained melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$
- reduce V_{p} by fraction of ice area that ridged

TOPO Ponds

- retained melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$
- reduce V_{p} by fraction of ice area that ridged
- Melt water fills thinnest categories first, may overflow Snow occupies space according to ρ_{s} If the ice is permeable, pond can drain to sea level

TOPO Ponds

- retained melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$
- reduce V_{p} by fraction of ice area that ridged
- Melt water fills thinnest categories first, may overflow Snow occupies space according to ρ_{s} If the ice is permeable, pond can drain to sea level
- $V_{i p}=$ refrozen ice "lid" on pond newly forming: use $F_{\text {sfc }}$ thickening: use Stefan solution for $\rho_{i} L \frac{d H}{d t}=k_{i} \frac{\partial T}{\partial z}$ melting: use meltt

TOPO Ponds

- retained melt water fraction: $0.15+0.7 a_{i}$ for $h_{i}>1 \mathrm{~cm}$
- reduce V_{p} by fraction of ice area that ridged
- Melt water fills thinnest categories first, may overflow Snow occupies space according to ρ_{s} If the ice is permeable, pond can drain to sea level
- $V_{i p}=$ refrozen ice "lid" on pond newly forming: use $F_{\text {sfc }}$ thickening: use Stefan solution for $\rho_{i} L \frac{d H}{d t}=k_{i} \frac{\partial T}{\partial z}$ melting: use meltt
- transport $V_{p}, a_{p}, V_{i p}$

Seasonal cycle, 1980-2001, 72-90 N

Arctic ice area fraction

TOPO Ponds

Major differences from Flocco et al. 2010:

- use delta-Eddington radiation scheme
- ice lid growth not added to ITD until $V_{p}=0$
- retained melt water fraction
- reduction by ridging
- transport a_{p}
- transport V_{p} and $V_{i p}$ on each category

Seasonal cycle, 1980-2001, 72-90 N

Arctic ice area fraction

Seasonal cycle, 1980-2001, 72-90 N

Sea ice thickness, July 1980-2001

dEdd

rad

topo

Seasonal cycle, 1980-2001, 72-90 N

Arctic mean pond depth

Pond fraction of ice area, July 1980-2001

topo

Pond depth, July 1980-2001

topo

Pond depth, July 1980-2001

Pond depth, July 1980-2001

refrozen pond ice thickness
rad

topo

Pond depth, September 1980-2001

refrozen pond ice thickness
rad

topo

September 2007

dEdd

default

topo

Concluding thoughts

- retained melt water fraction is a powerful tuning parameter

Concluding thoughts

- retained melt water fraction is a powerful tuning parameter
- $h s_{0}$ is also a powerful parameter for rad

Concluding thoughts

- retained melt water fraction is a powerful tuning parameter
- $h s_{0}$ is also a powerful parameter for rad
- need to transport a_{p} for albedo calculation after dynamics

Concluding thoughts

- retained melt water fraction is a powerful tuning parameter
- $h s_{0}$ is also a powerful parameter for rad
- need to transport a_{p} for albedo calculation after dynamics
- topo is more complex but not significantly more expensive

	rad	topo
ponds	0.25%	0.43%
advection	13%	14%

Concluding thoughts

- retained melt water fraction is a powerful tuning parameter
- $h s_{0}$ is also a powerful parameter for rad
- need to transport a_{p} for albedo calculation after dynamics
- topo is more complex but not significantly more expensive
- topo needs consistent thermodynamics

Concluding thoughts

- retained melt water fraction is a powerful tuning parameter
- $h s_{0}$ is also a powerful parameter for rad
- need to transport a_{p} for albedo calculation after dynamics
- topo is more complex but not significantly more expensive
- topo needs consistent thermodynamics
- topo needs more testing and tuning

Concluding thoughts

- retained melt water fraction is a powerful tuning parameter
- $h s_{0}$ is also a powerful parameter for rad
- need to transport a_{p} for albedo calculation after dynamics
- topo is more complex but not significantly more expensive
- topo needs consistent thermodynamics
- topo needs more testing and tuning
- need validation against observations

