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Ponds in CICE

@ default shortwave parameterization
includes melt ponds implicitly through reduced albedo

© default pond description in the delta Eddington radiation
scheme

© the CCSM4 pond scheme ‘rad’
submitted to CCSM4 special issue of J. Climate

© University College London’s approach ‘topo’
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RAD Ponds

@ ‘retained” melt water fraction: 0.15 + 0.7a; for h; > 1cm
e refreezing: Vp, = Ve~ 0005(=2=Tse) for Ty, < —2°

@ area ap=+/Vp/0.8 <1

depth hp, = 0.8a, < 0.9h;
volume Vo = aphp
@ snow ap = (1 — hs/0.03) a,

@ transport Vp, ap
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TOPO Ponds

@ retained melt water fraction: 0.15 + 0.7a; for h; > 1cm
@ reduce V), by fraction of ice area that ridged

@ Melt water fills thinnest categories first, may overflow
Snow occupies space according to pg
If the ice is permeable, pond can drain to sea level

@ V), = refrozen ice “lid” on pond
newly forming: use Fg
thickening: use Stefan solution for p;L 9 =
melting: use meltt

oT

@ transport Vp, ap, Vj



Seasonal cycle, 1980-2001, 72—90 N

Arctic ice area fraction
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TOPO Ponds

Major differences from Flocco et al. 2010:

@ use delta-Eddington radiation scheme

@ ice lid growth not added to ITD until V,, =0
@ retained melt water fraction

@ reduction by ridging

@ transport a,

@ transport V), and Vi, on each category



Seasonal cycle, 1980-2001, 72—90 N

Arctic ice area fraction
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Seasonal cycle, 1980-2001, 72—90 N

Arctic ice area fraction
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Sea ice thickness, July 1980-2001




Seasonal cycle, 1980-2001, 72—90 N

Arctic pond fraction of ice area
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Pond fraction of ice area, July 1980-2001




Pond depth, July 19802001




Pond depth, July 19802001
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Pond depth, July 19802001

refrozen pond ice thickness




Pond depth, September 1980—-2001
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advection | 13% 14%
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Concluding thoughts

retained melt water fraction is a powerful tuning parameter
hsy is also a powerful parameter for rad
need to transport a, for albedo calculation after dynamics

topo needs consistent thermodynamics
topo needs more testing and tuning

°
°
°
@ topo is more complex but not significantly more expensive
°
°
@ need validation against observations



