Mechanisms of Melt Pond Control on Arctic Sea Ice

Seasonal Evolution of Melt Pond Spatial Coverage

Barrow AK 2008-2010

Pond coverage shows tremendous temporal variability

Pink $=$ Pond Coverage
Green $=$ Albedo

Pond Coverage vs Ice Albedo

Barrow, AK 2008-2010

Pond coverage is the predominant driver of summer ice albedo

Compilation of Published Pond Coverage Data

+ Derekson 1997	\times Scharien et al 2005
* Hanesiak and Barber 1997	\diamond Tschudi 2008
- Perovich 2000	\circ Fetterer and Untersteiner 1998
\square Nazintsev 1964	\triangle Polashenski et al 2010 (this study)
\square Eicken 2005 (2000 data)	\diamond Eicken 2005 (2001 data)

Pond coverage shows tremendous spatial and interannual variability

Pond Coverage vs Date

Changing Ice $=$ Changing Pond Coverage

End of February Arctic Sea Ice Age 1981-2000 Median

Explicit treatment of melt ponds will increase resilience of ice albedo predictions in a changing climate

June 1st

 Albedo ~0.79

Melt Pond Coverage Along Transects

Melt Pond Coverage Along Transects

Melt Pond Coverage Along Transects

Melt Pond Coverage Along Transects

Meltwater

Pond Coverage

Albedo

Surface Heights

Date

\triangle Total Meltwater Lost from Surface
Meltwater Loss

Meltwater Loss

Meltwater Loss

Total Meltwater Lost from Surface
Flow at Macroscopic Holes - - - Pond Coverage

Meltwater Loss

Meltwater Loss

Total Meltwater Lost from Surface
Flow at Macroscopic Holes - - - Pond Coverage

Total Meltwater Lost from Surface
Flow at Macroscopic Holes - - - Pond Coverage

Total Meltwater Lost from Surface
Flow at Macroscopic Holes - - - Pond Coverage

Total Meltwater Lost from Surface
Flow at Macroscopic Holes - - - Pond Coverage

Changes in the meltwater balance drive pond coverage

- Why do brine channels spontaneously open and enlarge?

- What causes the permeability transition?

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

A Conceptual Model: 2D Lattice

Golden, Ackley, and Lytle. "The Percolation Phase Transition in Ice." Science. Vol 232, 1998.

Ice Core Profiles

From Petrich, Eicken, and Druckenmiller; Barrow Ice Observatory

$\rightarrow-1 / 15 / 2009 \rightarrow-3 / 25 / 2009 \rightarrow 5 / 16 / 2009 \rightarrow-2 / 9 / 2008 \rightarrow-4 / 7 / 2008 \sim 4 / 29 / 2008 \rightarrow-5 / 26 / 2008$

Ice Core Profiles

From Petrich, Eicken, and Druckenmiller; Barrow Ice Observatory

[^0]
$$
\rightarrow-6 / 5 / 2009 \rightarrow-6 / 9 / 2009 \rightarrow-6 / 11 / 2009
$$

$\rightarrow-6 / 5 / 2009 \rightarrow-6 / 9 / 2009 \rightarrow-6 / 11 / 2009 \sim-6 / 13 / 2009 \sim-6 / 15 / 2009$

Melting Snow

Sea Ice

Ocean

Sea Ice

Ocean

Snow

Ocean

Meltwater

Ocean

Meltwater

Ocean

Meltwater

Ocean

Meltwater

Ocean

Inter - Lamellar Brine Inclusions

B Sea ice

$\underline{a} \leq \underline{b}<\underline{c}$
$\underline{a} \sim 0.1$ to $0.3 \mathrm{~mm} ; \underline{b} \sim 1$ to $5 \times \underline{a} ; \underline{c}>5 \times \underline{a}$
d ~ 0.25 to 1.25 mm (avg 0.7)

\square Seawater Interface

Organized Arborescent Brine Channels

Horizontal Section

Large core holes are enlarged by flowing water

Photos: Becky Niemiec

Small holes are repaired by refreezing meltwater

Critical Channel Size vs Date

Barrow 2010 Isotope Data

Delta H2

Ice Temperature Drives the formation of Outflow Pathways

Melt Pond Coverage Along Transects

Melt Pond Coverage Along Transects

Melt Pond Coverage Along Transects

Meltwater
Volume

Albedo

Pre-Melt Surface Topography

Areas Pond Covered on June 7th

Topography Where Ponds Will Form

Cumulative Surface Height Distribution

Cumulative Surface Height Distribution

Stage I Pond Growth is Essentially Surface Flooding

Percent Ponded vs Pre Season Surface Height

Cumulative Surface Height Distribution

Cumulative Surface Height Distribution

Stage II and III Ponds only form where ponds formed in stage one

Cumulative Surface Height Distribution

Stage II and III Ponds only form where ponds formed in stage one

Percent Ponded vs Pre Season Surface Height South Site

On level ice, snow dunes control surface height distribution and pond formation.

Melt Pond Coverage Along Transects

What Causes Late Season Pond Growth?

Areas which become ponded during Stage III

What Causes Late Season Pond Growth?

Areas which are within 5 cm of freeboard at the start of stage III

Pond Parameterization CCSM CICE 4.0

$$
v_{p}^{\prime}=v_{p}(t)+0.1\left(d h_{i} \frac{\rho_{i}}{\rho_{w}}+d h_{s} \frac{\rho_{s}}{\rho_{w}}+F_{\text {rain }} \frac{\Delta t}{\rho_{w}}\right)
$$

New pond volume $=$ old pond volume $+10 \%$ of the new melt water

$$
h_{p}=0.8 f_{p}
$$

Pond fraction is related to pond depth by a factor of 0.8

CICE 4.0 Documentation

Pond Parameterization ECHAM 5

$$
f_{m p}=0.5 * \tanh \left(30 d_{m p}-2.5\right)+0.5
$$

Pond fraction is related to pond depth by this function

Pond Coverage from Observations and GCM Parameterizations

= = - ECHAM5 Parameterization $=-$ = CICE 4.0 Parameterization ——2009 Observations

Pond Coverage from Observations and GCM Parameterizations

$=-$ = ECHAM5 Parameterization $=-=$ CICE 4.0 Parameterization $工-2009$ Observations

Pond Fraction Vs Pond Depth 2009

Melt Water Generated vs. Meltwater Retained

- - - South Site 2009
- - North Site 2009

Conclusions:

- Melt ponds are quite important to sea ice
- Modern model validation does not ensure good future albedo predictions
- Melt ponds can be incorporated explicitly with modest computational investment.

Melt Ponds Controlled by

- Meltwater Balance
- Two mechanisms of drainage
- Direct functions of ice temperature/salinity
- Ice/Snow Surface Topography
- Strong function surface height distribution
- Controlled by ice type
- Snow distribution important
- Insufficient observations

Good, Yet Simple Melt Pond Parameterizations Are Possible (There's lots of physics that would be fun to incorporate though!)

Thank You

Collaborators
Don Perovich, Kerry Claffey, Zoe Courville, Dave Finnegan, Matthew Druckenmiller, Hajo Eicken, Chris Petrich, Matthew Sturm, Karen Frey, Luke Trusel, and Christie Wood

Barrow Arctic Science Consortium USCGS Healy Crew

National Science Foundation Grant No. ARC-0454900 NASA ICESCAPE Program

[^0]: $-1 / 15 / 2009-3 / 25 / 2009 \rightarrow-5 / 16 / 2009 \rightarrow-2 / 9 / 2008 \rightarrow-4 / 7 / 2008 \leadsto 4 / 29 / 2008 \rightarrow-5 / 26 / 2008$

