Internal Variability in Simulated 21st Century Arctic Sea Ice Loss: Climate Forcing and Response

Polar Climate Working Group Meeting February 28, 2011

Justin J. Wettstein and Clara Deser Climate Analysis Section, CGD, NCAR

acknowledgements: Marika Holland, Adam Phillips, Dennis Shea, Matt Long, Dave Bailey, Gary Strand

Quick outline

• 1) Observed and simulated ice loss

• 2) Comparing the simulated evolution of sea ice extent and volume

 3) Some preliminary assessments of climate forcing and response

Observed and simulated ice extent

NIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH

simulated ice extent

x 10⁶

NCAR CCSM3:

39-member T42 ensemble

Slightly different atmospheric initial conditions in each ensemble member

A1B 21st century forcing

Initial ice is too extensive & too thick (but it is not alone in this regard...)

Initial ice is distributed incorrectly

2005-2009 vs. 2055-2059 average defines a "50-year epoch difference"

Observed and simulated ice extent

Between 42% and 74% reduction in epoch September sea ice extent

Key result: Internal variability is comparable to intra-model variability.

Simulated ice volume and extent: CCSM3

Epoch diff in extent (x) & volume (y)

Simulated ice volume and extent: CCSM3

2020 volume to late ice

Late extent to early ice

ice extent scatterplots

Early extent has little to do with late extent Epoch difference only weakly related to early extent Epoch difference strongly related to late extent

Ice extent & concentration (color shading)

5 ensemble members with the <u>SMALLEST</u> epoch (2005-2009) - (2055-2059) difference in ice extent

5 ensemble members with the <u>LARGEST</u> epoch (2005-2009) - (2055-2059) difference in ice extent

SLP regression (shading):

c.i. 0.25 mb / 1 std Sept. ice extent loss

SLP regression (shading):

c.i. 0.25 mb / 1 std Sept. ice extent loss

Ice concentration regression: c.i. 2% / 1 std Sept. ice extent loss

Ice thickness regression:

c.i. 0.05 m / 1 std Sept. ice extent loss

DJF sea level pressure

5 ensemble members with the <u>SMALLEST</u> epoch (2005-2009) - (2055-2059) difference in ice extent

5 ensemble members with the <u>LARGEST</u> epoch (2005-2009) - (2055-2059) difference in ice extent

Work in progress...

- Looking at dynamic (e.g., wind-driven, ocean heat transport) forcing / response to compare with thermodynamic forcing / response
- Compare high-frequency forcing and response to the epoch difference regressions
- Examine robustness in smaller T85 CCSM3 and CCSM4 ensembles; available observations

