

CESM1.0/WACCM4 with CARMA3.0 Microphysics

Michael Mills **Charles Bardeen**

CCM

Α

CAM/CARMA (C. Bardeen)

CARMA3.0: New Features

• CAM/CARMA

- Radiatively active particles via **RRTMG**
- Diagnostic & prognostic particles
- Dry deposition integration
- Updated CAM wet deposition code
- OPEN/MP and hybrid modes
- Same result independent of decomposition and restarts
- Cloud (before coupling) & aerosol (after coupling) CARMA models
- Detrainment of cloud condensate to CARMA

- Initialize CARMA every timestep or once against a reference temperature profile
- Multiple CARMA models in the same source tree
- CARMA
 - 1-Dimensional
 - Thread safe
 - Mass and energy conserving within strict CAM requirements
 - Substep retry mechanism for more efficient nucleation & growth
 - Brownian diffusion

Whole Atmosphere **Community Climate Model**

Regional Nuclear War Simulation

- 100 x 15-kt weapons detonated in India & Pakistan
- Urban firestorms loft 5 Tg black carbon (BC) smoke into upper troposphere after initial rainout
- CESM1/WACCM4-CARMA at 1.9° lat x 2.5° lon resolution
- BC initialized at uniform mmr, 150-300 hPa in 50 columns on May 15, 2012
- One BC bin, added to CAM namelist rad_climate section as prognostic aerosol with defined BC optical properties
- Deposition passed to surface models
- Control run: CMIP5 RCP4.5

NCAR

Whole Atmosphere Community Climate Model

Community Earth System Model

Ozone Loss Mechanisms

- smoke rises to the top of the stratosphere producing stronger and longer-lasting heating
- 2. two temperaturesensitive ozone loss reactions accelerate (Chapman and NO_x)

- 3. the rise of the smoke plume perturbs N_2O , which leads to enhanced NO_x production
- 4. radiative effects reduce the stratospheric circulation, so smoke and NOx stays in the stratosphere longer

Community Earth System Model

NCAR

Globally Averaged Anomalies

Whole Atmosphere Community Climate Model

(Robock et al.,

ACP, 2007)

Column-integrated optical depths

CESM/WACCM

Whole Atmosphere Community Climate Model

NCAR

Whole Atmosphere Community Climate Model

UV Indices, June, including BC attenuation

WACCM

cloud-free conditions (J. Lee-Taylor)

NCAR

NES

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Land model: BC deposition (5 Tg - control)

NCAR

Land ice model: total ice content change (mm)

NCAR

CARMA3.0: Known Issues

- Full initialization (rather than to reference temperature) can be very slow, particularly for coagulation.
- PPM advection code has noisy sedimentation when using hybrid coordinates.
- PPM advection code does not return fluxes out the top and bottom of the column, so a kludge was added to get flux out the bottom as a column difference.
- Standard fall velocity routine has odd kinks in areas where it transitions between different Reynolds regimes.
- Standard shape fall velocity routine is not handling all shapes and aspect ratios correctly.
- Growth code was not mass or energy conserving, so rlheat and gc are recalculated based upon condensed mass change.
- Wet radius is not used in coagulation, only in sedimentation.
- Particle swelling doesn't work with fixed initialization.
- WACCM gives very high temperatures, outside the range of Murphy & Koop [2005] (123 K < T <332 K). Should you ignore this, limit to some value, print warning message, ...?

CAM/CARMA: Known Issues

- Wet deposition is being tested, and some configuration parameters for wet deposition are not currently configurable at the CARMAGROUP level.
- Core mass is sometimes larger than total mass. This can happen from parent model advection, but perhaps there are also other causes.
- WACCM/CARMA has been built (Mac, Bluefire, & Pleiades) and is in the process of being tested.
- WACCM is not yet validated with RRTMG. WACCM/CARMA has been built with CAMRT, but CARMA radiative code won't support radiatively active particles with CAMRT.
- CAM can be slow to compile with ifort (shr_scam.F90 ~45 min, cldwat2m_micro.F90 ~10 min).

