Simulations of the Circulation and Transport in the Middle Atmosphere Using WACCM3.5

A. K. Smith, R. R. Garcia, D. R. Marsh, J. H. Richter

paper in preparation

Transport in the transformed Eulerian mean system

$$\overline{v}^* \equiv \overline{v} - \frac{1}{\rho_0} \frac{\partial}{\partial z} \left(\rho_0 \frac{\overline{v'\theta'}}{\overline{\theta_z}} \right)$$
$$\overline{w}^* \equiv \overline{w} + \frac{1}{a \cos\phi} \frac{\partial}{\partial\phi} \left(\cos\phi \frac{\overline{v'\theta'}}{\overline{\theta_z}} \right)$$

The eddy correlation terms (v' θ ', etc.) have been calculated and saved in WACCM output so the residual circulation can be determined daily.

Tracer μ :

climatological v* and w* vectors at solstice

processes that affect zonal average CO tendency in CO due to various processes – June average

impact of TEM circulation on trace species with MLT or thermospheric source

CO (ppmv)

advection causes steep vertical gradients in summer, weaker vertical gradients in winter

(log10 of mixing ratio)

observational evidence for rising in winter polar MLT

Vertical gradients are stronger in summer; weaker in winter.

NH 100 Altitude [km] 90 80 70-Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 110-SH 100 Altitude [km] SH 90 80 70 I Jan IFebl Mar I Apr I May I Jun I Jul I Aug I Sep I Oct I Nov I Dec I ODIN H_2O , 2003-2007, averaged 50°-82° from Lossow et al., JGR, 2009

8 7.5 7

6.5 6

5.5 5

,5

.5 .5

110

100

Water vapour [ppmv]

WACCM SH

Plumes of higher water extend up from ~90 km during winter, both hemispheres.

NH

110

altitude of transition from summer max to winter max: SH: WACCM and Odin at ~90 km

NH: Odin at ~94 km; WACCM at ~90 km

WACCM H₂O for comparison

| Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun

observational evidence for rising in winter polar MLT

origin of air parcels in winter high latitudes

origin of air parcels for all runs, all years

- trajectory origin points
- all trajectories end at 0.01 hPa and 85° on the specified calendar date
- SH air originates at higher altitude & lower latitudes
- air parcels come down directly from the winter polar thermosphere only in very few years in either hemisphere

closer look at an active NH winter

time series for the case-study winter (R3:2002)

- latitude: 80°-90°N
- sudden warming (SSW) in January followed by elevated stratopause
- CO and NOx: decrease during SSW and then steady increase for ~ 40 days
- magnitude of WACCM CO perturbations similar to observations in 2004, 2006, 2009
- WACCM NOx perturbations below 80 km are smaller than observed in 2004, 2006, 2009

observations of perturbed composition: Funke et al, ACP, 2009 Damiani et al., ACP, 2010 Randall et al., GRL, 2009

compare CO with recent active winters

compare NOx with recent active winters

ACE sees NOx of 100 ppb down to ~55 km in 2006 and 2009

In WACCM, 100 ppb occurs only above ~70 km.

ACE observations of NOx

Randall et al, GRL 2009

TEM circulation for this active winter

- during SSW
 - upwelling in polar mesosphere
- after SSW

100 90

80

20 oltitude

60

50 40

- strong steady poleward flow at 70-90 km
- poleward, downward flow strongest in the weeks following the warming
- downwelling in polar region
- no indication of sustained flow from the polar thermosphere

WACCM transport in the winter MLT

- For most years, polar downward transported air comes from upper mesosphere, mid-low latitudes.
- The mean transport is upward to the thermosphere from the winter upper mesosphere.
- Even during years with disturbed dynamics and enhanced middle atmosphere CO and NO_x, the bulk of the descending air originates in the mesosphere at middle latitudes, not the polar thermosphere.
- WACCM NH poleward winter TEM flow may be too low in altitude.
- WACCM underestimates transport of NOx into the lower mesosphere – may be associated with the altitude of the circulation cell.