Tropical Cyclones and precipitation in 25 Km CAM4 and CAM5

Julio Bacmeister, Cecile Hannay, Richard Neale, Peter Lauritzen, Andrew Gettelman, John Truesdale, Julie Caron

Michael Wehner (DoE/LBNL), Mark Taylor (DoE/Sandia)

Thanks to DoE, Warren Washington for computer time

AMWG Meeting, 1-3 February, 2012

	CAM-4	CAM-5
PBL	Holtslag-Boville	UW diagnostic TKE (Bretherton and Park)
ShCu	Hack shallow convection	UW (Park and Bretherton)
Radiation	CAM radiation (Collins)	RRTMG
Cloud macro- phys	Rasch-Kristjansson, Zhang	Park et al.
Micro-physics	Rasch-Kristjansson	2 moment (Morrison Gettelman)
Aerosol	Prescribed bulk	Modal prognostic (Ghan,Liu) (Prescribed BAM available for high resolution)
Vertical grid	26-levels	30-levels (4 added in PBL)
Deep Conv	Zhang-Macfarlane w/ mods by Neale,-Richter	<i>"</i>
Dynamical Coro	FV latlon (Lin-Rood)	"
CUTE	Spectral Element Dycore implemented	

Existing High-Resolution Experiments

CAM 4:

FV dycore 0.23x0.31

- 1979-present. 2 runs, 1 with GFDL tracking data available 6-hrly, 1 with everything recoverable but U850,V850.
- Future time-slice 2080-2100 (present day climo SSTs)+(CMIP5 RCP8.5 perturbation)

<u>HadISST SSTs</u>

CAM5:

FV dycore 0.23x0.31

- 1979-present (Michael Wehner LBNL, prescribed BAM aerosols)
- 18 month runs (2005-6) (Both prescribed BAM and predicted MAM aerosols)
- 18 month run w/out deep convection scheme
- 18 month runs w/precipitation loading effects

Spectral element (SE) dycore ~25km

• 12+ months (climo ssts)

Spectral element (SE) dycore ~12.5km

• Ongoing AMIP run 2004-

Precipitation and tropical cyclone comparisons

TC analysis in CAM4 just beginning

CAM5

Total precip.

PRECT Global mean=3.2 mm d⁻¹

PRECT fqd000_nch _200508

Global mean=3.2

Large Scale precip.

PRECL Global mean=1.6 mm d⁻¹

Global mean=1.6

17.0

14.0 12.0 9.0 8.0 7.0 6.0 4.0 3.0 2.0 1.0 0.5 0.2 0.0

CAM4

PRECT Global mean=3.0 mm d⁻¹

CAM4-future Total precip. 08/2100 PRECT Global mean=3.1 mm d⁻¹ PRECT f.e10.FAMIP.f02_g16.RCP85.002 _210008 Global mean=3.1

Large Scale precip.

PRECL Global mean=2.1 mm d⁻¹

CAM4-present PRECT Global mean=3.0 mm d⁻¹

PRECT f40_amip_025d_b06c4_207jp_200408

_200408 Global mean=3.0

PREC Global mean=1.9 mm d⁻¹

PDFs of instantaneous precipitation intensity 30°S-30°N (August)

PDFs of instantaneous precipitation intensity 30°S-30°N (August)

Tropical storm-Category 5 2003-2005

0.0

Tropical storm-Category 5 2003-2005

Tropical storm-Category 5 2003-2005

Tropical storm-Category 5 2005 JJASON

Time spent at Categories by tropical cyclones (hours) All basins

Northern hemisphere TC season June – Dec

Four storms with highest wind speeds CAM4 2004 JJASOND

Shown: Precipitation within 350 km radius of storm center, every 24 hours

Four W Pacific storms with highest wind speeds CAM5 2005 JJASOND

Shown: Precipitation within 350 km radius of storm center, every 24 hours

Time series of precipitation following storms in CAM5; *core* r<50km (black) and *storm exterior* 500km>r>250km

Convective and large-scale precipitation separated

Time series of precipitation following storms in CAM5; *core* r<50km (black) and *storm exterior* 500km>r>250km

Convective and large-scale precipitation separated

Precipitation time series in storm cores (black), storm exteriors (red).

Convective precip (dashed), L Thin blue lines show surface pressure.

Large-scale precip (solid). re. Note overwhelming dominance of LS in cores

Time spent at Categories by tropical cyclones (hours) All basins

Northern hemisphere TC season June – Dec

Time spent at Categories by tropical cyclones (hours) All basins

Northern hemisphere TC season June – Dec

TS anomaly; JJASON 2097,2098,2100 vs. climo (2080-2100)

Topographic effects on precipitation with increasing resolution

Total Precipitation (JJA)

Much improved spatial pattern and magnitude of rainfall

- Western India and Bay of Bengal
- Longstanding wet bias over Yemen, Oman and Saudi Arabia
- Somali jet more realistic

Courtesy Rich Neale

1

CAM4 US Precipitation

High-resolution/rough topography. Flow steered north into SE US carrying moisture

Total Precipitation (JJA)

Initial implementation of CAM-SE uses very smooth topography. Reduces improvement in precipitation patterns related to topography **Courtesy Rich Neale**

Conclusions

Cyclogenesis with CAM4 physics weaker than with CAM5 physics, especially in North Atlantic basin *-tropical storms sizes more similar in CAM4?*

RCP8.5 seems to produce only weak impacts on CAM4 TC climatology

Simulated tropical cyclone cores are completely dominated by large-scale precipitation

There is probably a trade-off between topographic smoothing and regional improvements in precipitation w/ resolution

Questions and Future Work

Time slices with CAM5

Is weak cyclogenesis with CAM4 physics vs CAM5 related to large-scale variables or to physics? *Calculate potential intensity diagnostics etc..*

Implement GFDL cyclone tracking codes