

The Case of the Disappearing Condensate

Detectives: Peter Caldwell, Dan Bergmann, Steve Klein, Sungs<u>u Park</u>, Hugh Morrison, Xiaohong Liu, Phil Rasch, Chris Bretherton 2/2/12

Prepared by LLNL under Contract DE-AC52-07NA237344.

Problem:

Fig: cell-ave condensate path (TGCWP) and liq+ice cloud fraction (CLDLOW) from MPACE-B (mixedphase stratocumulus) single-column run using branch from cam5_1_16 (aerosol=constant, no activation fix)

 Sequential splitting (using output from one process as input for next) can cause inconsistencies in initially balanced states.

Questions:

1. How frequent is this kind of issue?

2. What is the cause?

3. What is the impact on climate?

4. How can we fix it?

Micro Depletion Frequency:

Fig: Fraction of steps when microphysics starts with enough cloud water to act but depletes all water within that step. From 5 yr CAM5.0 AMIP 2° run.

- Micro runs out of liquid *most* of the time over much of the globe!
- Microphysical treatment is ad hoc when condensate is depleted within a timestep
- Is initial liquid negligibly small in depletion cases?

Microphysical Depletion – Joint PDF

q_l is typically < 0.1 g/kg and
n_l typically < 50 cm⁻³

Something pathological happens along dn/dq

Depletion is frequent when $n_1 < 5$ cm⁻³. Otherwise not.

Top: # of samples with given cell-ave liquid water (q_i) and droplet concentration (n_i) just after macro & before micro. **Bottom**: Frequency of total depletion by micro given pre-micro q_i and n_i. From ~900mb lev of 1 month CAM5.1.06 2° run after 3 months spinup. White line=100 sample level.

About n_I...

Activation currently applied inconsistently:

Macro creates qc, Activ creates nc

New qc applied **but not**

Known issue^{nc} will be fixed in future releases

2 substeps

In Single-Column mode (SCAM):

 Without code changes, n_i≈0!

sed, rad,

etc

½ of new

nc added

Fig: CCN @ 0.1% super-saturation for MPACE-B SCAM run.

Fixed n_l and fixed aerosol options will be available soon

Convergence Test for Coupling Error

Fig: Zonal-mean LWP below ~820 mb from last 3 days of 5 day cam5_1_16 2° run

- Coupling @ 20 min dt (default) ⇒ LWP too low
- 10 min coupling (2 substeps) appears sufficient

Effect of Shorter Micro dt

- Micro iteration is more important than coupling
- Micro substepping also acts to increase LWP.

Answers:

1. How frequent is this kind of issue? Very frequent 2. What is the cause? Sequential splitting macro/micro coupling error \Rightarrow ~10% LWP low bias (after subtracting micro non-convergence) Total depletion only occurs for very low n₁... Suggests microphysics is behaving reasonably though micro substepping not converged ightarrow(resulting in ~20% low bias) Low n₁ is the culprit(?)

contact: caldwell19@llnl.gov

Micro Substepping Only.

Droplet Activation Consistency

Fig 5: Cloud frequency along the GCSS track from satellite and satellite simulator using 4 yrs of AMIP data. Courtesy Brian Medeiros.

ΔLWP due to non-timesplit

- Huge global-ave LWP increase
 - surprising b/c macro replentishment should allow micro to maintain high rates?
- ΔLWP particularly big in storm tracks and Sc regions
- Coding this was really hard.

Effect of substepping on LWP

time-integration has lower depletion -> higher LWP

Mores substeps means micro sees more new qc from macro.

macro update, 2nd step has ½ of new macro qc -> less qc, less depletion W/ 50 substeps, replentishing -> sustained high decreasing LWP in

macro/micro & numerics have opposing but not annealing affacta

Effect of Fixes on Limiting Freq

Changes make surprisingly little difference?

Autoconversion Contours

Reconciling Previous Slides:

Top: # of samples with given lat and n_l just after macro & before micro. **Bottom**: Frequency of total micro depletion as a function of lat and n_l. From 5th lev from surf of 1 month CAM5.1.06 2° run after 3 months spinup.

High lats have very low n most of the time

Conclusion: total micro depletion occurs only at very low n_l – which happens more often than it should(?)