Measurements for Guiding Ice Nucleation, PSD and Morphology Parameterizations in CAM5

> David L. Mitchell and Subhashree Mishra Desert Research Institute, Reno, Nevada

> > R. Paul Lawson SPEC, Inc., Boulder, Colorado

Uncertainties in CAM5 Microphysics:

- 1. Ice nucleation
- 2. Ice fall speed
- 3. Ice particle shape (A-D and m-D power laws)
- 4. PSD shape

Historical PSD measurements in cirrus clouds were subject to small ice crystal artifacts due to shattering at the probe inlet. This swarm of ice artifacts masked the dependence of small ice crystals on ice nucleation processes. The 2D-S probe was used during SPARTICUS and due to its design and data processing the concentration of ice artifacts now appear to be greatly reduced. This study shows what the 2D-S data may imply regarding ice nucleation and ice crystal morphology in cirrus clouds.

Shattering often increases small crystals by 10²

TC4 Results

Evidence for homogeneous freezing nucleation in fresh anvil cirrus

Evidence for homogeneous freezing nucleation in fresh anvil cirrus (continued)

Temperature dependence of ice particle shape

SPARTICUS RESULTS FOR SYNOPTIC CIRRUS CLOUDS

Temperature dependence of SPARTICUS PSD

Evidence of homogeneous freezing nucleation?

Temperature dependence of ice particle shape

-

Temperature dependence of the mass-weighted ice fall-speed

Comparison of measurement-derived $\rm D_e$ and $\rm V_m$ with values derived from Donovan PSD scheme modified using satellite radiances

Satellite PSD retrievals described in Mitchell et al. 2010: Inferring cirrus size distributions through satellite remote sensing and microphysical databases, J. Atmos. Sci., 67, 1106-1125.

Tentative Suggestions for Improving CAM5

- 1. Achieve consistency between measured and predicted N / IWC, and predict V_m from D_e . This will link microphysics/radiation/dynamics.
- 2. For T < -20°C, two ice particle shape regimes appear to exist for ML synoptic and anvil (not shown) cirrus. Characterize A-D and m-D power laws for ice particles in each regime and update the ice optics.
 Only one regime for tropics based on TC4
- For T < -20°C, two PSD regimes appear to exist, separated near -40°C. Enable CAM5 PSD to conform to these regimes and update the ice optics to conform with these regimes.
- 4. Bimodality for T > -40°C may be due to lower nucleation rates and higher aggregation rates from more complex crystal shapes. Might consider aggregation rates in each regime to improve N / IWC ratios, D_e and V_m .

Anvil cirrus: Temperature dependence of ice crystal shape

SPartICus cirrus were identified as synoptic or anvil using satellite imagery and flight notes.

Contains synoptic cirrus

Contains anvil cirrus

Source: P. Minnis (NASA Langley) http://www-angler.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=ARM-SPARTICUS

Selected Case Studies

Synoptic Cirrus (174 segments)

- Jan 19th

- Jan 20th

- Jan. 27th

- Feb. 11th

- March 23rd

- March 26th

- April 1st

Anvil Cirrus (122 segments)

- April 22nd
- April 28th
- June 12th
- June 14th
- June 15th
- June 24th

Cloud segments are identified for each case by making sure that

- they contain no liquid water,
- they have good sampling statistics and utilize a good fraction of the data
- they are sampled under relatively steady microphysical conditions

23:44 3:541

19

22:7io

-35°

CPI imagery for synoptic cirrus clouds sampled during SPARTICUS; random sampling.

12:27: 16:16:26:27:72:92:0

22:27

33:383

23:43;

23:43:23:185

22:23:

43:43i

23:43:

23:44:23

-15°

50:770 22:22:

From Krämer et al. 2009, ACP

Peak RH_i is similar for both clear sky and inside cirrus conditions. Relatively high RH_i can exist < ~150% under clear conditions, suggesting heterogeneous nucleation processes often do not produce cirrus for such conditions.

Most in-cloud conditions have $85\% < RH_i < 115\%$ \longrightarrow isometric or compact ice crystals. **Paradox:** Homogeneous freezing nucleation appears to contribute most of the ice crystals in mid-latitude synoptic cirrus. However, this requires $RH_i > ~ 140\%$, and in-cloud cirrus measurements show that typically 85% < RH_i < 115%.

Possible explanation: A moist layer in the upper troposphere undergoes gradual ascent until RH_i reaches homo. nucl. threshold, resulting in a sudden production of ice crystals with relatively high N. RH_i then rapidly approaches ice saturation (within ~ 5-10 min.). Thereafter ice crystals grow as compact or isometric. This may explain SPARTICUS observations. This may also explain the Krämer et al. observations, since high RH_i would be short-lived.

Another aspect is whether ice crystal shape depends on the nucleation process. Are dense, compact crystals associated with frozen haze or cloud droplets? Are more branched crystals associated with deposition or condensation freezing nucleation?

Some Anvil-Synoptic Cirrus Comparisons

Anvil cirrus PSD temperature dependence

Mass-normalized number concentration

2-stage nucleation process in an updraft

· 24

2-stage nucleation process with negligible vertical motion. Initial droplet diameter = 10 μ m, LWC = 0.10 g m⁻³.

- 26