OCEAN MODEL DEVELOPMENTS RELEVANT TO BGC

(EXPLORATORY SENSITIVITY EXPERIMENTS)

Gokhan Danabasoglu, Matt Long, Markus Jochum, Keith Lindsay, Keith Moore, Peter Gent

- Preliminary investigation of parameter sensitivities of ventilation and mixing biases.
- Initial focus is the Southern Ocean, considering mixed layer depth and CFC-11 distributions as metrics.

WINTER-TIME MIXED LAYER DEPTH (m)

a) OBS

Based on PHC2 data
b) CCSM4 - OBS

d) $\operatorname{CCSM} 3-O B S$

Density change of $0.125 \mathrm{~kg} \mathrm{~m}^{-3}$ from surface

CFC-11 COLUMN INVENTORY (moles km^{-2})

ZONAL-MEAN CFC-11 from CONTROL

EXPERIMENTAL SETUP

Ocean - sea-ice coupled simulations (G cases) forced with the CORE inter-annually varying data sets for the 19482007 period.

CONTROL: 300-yr simulation, SENSITIVITY EXPERIMENTS: 60-yr integrations starting from year 240 of the control case.

Experiments:

Ricrx2: Set $\mathrm{Ri}_{\mathrm{cr}}=0.6$ (up from 0.3)
Pistonx2: Double the CFC piston velocity
$K(600)$: increase minimum Redi diffusivity coefficient to $600 \mathrm{~m}^{2} \mathrm{~s}^{-1}$ (from $300 \mathrm{~m}^{2} \mathrm{~s}^{-1}$)
K(1000): increase minimum Redi diffusivity to $1000 \mathrm{~m}^{2} \mathrm{~s}^{-1}$
k_{v} : increase the background vertical diffusivity to $0.3 \times 10^{-}$ ${ }^{4} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ (from $0.17 \times 10^{-4} \mathrm{~m}^{2} \mathrm{~s}^{-1}$)

TIME-MEAN MIXED LAYER DEPTH

Ricrx2

K(600)

CFC-11 COLUMN INVENTORY

ZONAL-MEAN CFC-11 DIFFERENCES

Control

Piston x 2

Zonal-mean CFC-11 bias and change [pmol L^{-1}]

| $\|\|\mid$ | \mid | \mid | \mid | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1.2 | -0.9 | -0.6 | -0.3 | 0 | 0.3 | 0.6 | 0.9 | 1.2 |

ZONAL-MEAN CFC-11 DIFFERENCES

ZONAL-MEAN CFC-11 DIFFERENCES

ZONAL-MEAN CFC-11 DIFFERENCES FROM OBSERVED

SUMMARY AND FUTURE WORK

-Work in progress,
-Clear improvements in CFC-11 distributions, particularly with increased Redi diffusivity.

- Anisotropic mesoscale mixing formulation,
- More detailed comparison of model and observations regarding MLD,
- Near-inertial wave mixing and frequent coupling impacts,
-Come up with a set of optimal parameterizations and parameter choices, also considering impacts on other metrics,
- Assess long term behavior.

Any other suggestions?

