Evolution of the three-dimensional structure of atmospheric carbon dioxide during the 21st century

Gretchen Keppel-Aleks, the CESM Biogeochemistry Working Group, the HIPPO Science Team, TCCON Partners, and NOAA GMD

> I March 2012 CESM BGCWG Meeting

Atmospheric CO₂ Observations

Observations that characterize vertical CO_2 are crucial for evaluating CO_2 in a model.

Growth rate in atmospheric CO₂

CESM airborne fraction of anthropogenic CO_2 is 25% high.

Interhemispheric CO₂ difference

0.6 ppm Pg⁻¹ Intercept: -1.5 ppm

Difference between observed CO₂ at MLO and SPO suggests relatively higher southern hemisphere CO₂, whereas CESM has higher northern hemisphere background CO₂.

0.3 ppm Pg⁻¹

Seasonal and spatial patterns in CO_2 are underestimated in CESM.

Phasing of the seasonal cycle

Variations in Column CO₂

Total column CO₂ likewise suggests that CESM northern hemisphere NEP is small during the growing season.

Gradients in the free troposphere

HIPPO data show larger north-south gradients during the growing season and more vertical stratification than CESM.

Vertical propagation of the seasonal cycle

Seasonal cycle amplitudes are similar at the surface and aloft in CESM, whereas observations show a larger decrease in amplitude with altitude.

Evolution of CO₂ in RCPs

Trajectory of fossil fuel emissions in RCP4.5 and RCP8.5 scenarios leads to large differences in atmospheric CO₂.

21st century changes in seasonality

Interannual variations in CO₂

Variations in CO_2 at periods between 2-10 years increase in the northern hemisphere midlatitudes.

Interannual Variability in CO₂ drivers

scenario.

Zonal anomalies from land fluxes

RCP 8.5 - RCP4.5

Land and ocean fluxes will generate regional anomalies, in addition to fossil fuel emissions.

Evolution of gradients in CO₂

Korean surface station shows faster increase in CO₂ relative to SPO than do other northern hemisphere stations.

Conclusions and future work

Terrestrial exchange is underestimated during northern hemisphere summer by CLM

Atmospheric CO_2 may allow us to understand CAM physics better

Export of carbon from terrestrial uptake to oceans may improve the north-south gradient in background CO_2

Large differences emerge in the 21st century as fossil fuel emissions follow different trajectories

CESM: trends in E-W surface gradient

Trend [ppm yr⁻¹]SiteDataCESMCESM(FFF)tap0.170.190.19mhd0.060.020.07mlo0.060.020.06smo0.03-0.040.01

Meridional gradient in CO₂

The north-south gradient at the surface and the column is underestimated in summer.