Impacts of changing North American boreal forest fire regimes on landscape composition and regional climate

Brendan M. Rogers, James T. Randerson, and Gordon Bonan

CCSM Joint Land and Biogeochemistry Working Group March 1, 2011

Introduction

Why vegetation from boreal forest fires?

- ΔT highest in high latitude systems
- potentially large feedbacks
 - GHGs & carbon
 - landscape biophysics
 - Δ snow
 - Δ lakes/wetlands/glaciers
 - Δ vegetation
 - migration (tundra)
 - disturbance (forest)

Why North America?

- most fires severe
- relatively homogenous ecology
- long-term data
- projections of large changes

Balshi et al. [2009]

Introduction

field plots

- Amiro [2001]
- Chambers & Chapin [2002]
- Chambers et al. [2005]
- Liu et al. [2005]
- Liu & Randerson [2008]
- McMillan & Goulden [2008]

upscaling

field syntheses

- Amiro et al. [2006]
- regional trajectories
 - Lyons et al. [2008]
 - Beck et al. [2011]
 - Jin et al. [2012]

radiative extrapolation

• Randerson et al. [2006]

continental modeling

This study

- data-driven fire and vegetation patterns
- prescribe succession and altered fire regimes
- simulate impacts on continental climate

global modeling

Future work

- Eurasia and North America
- prognostic fire
- dynamic vegetation
- aerosols and GHGs/ carbon balance
- simulate feedbacks under climate change

Large Fire Databases

MODIS Land Cover

Large Fire Databases

MODIS Land Cover

¹observations from Amiro et al. [2006]

¹observations from *Amiro et al.* [2006] ²observations from *Lyons et al.* [2008] ³observations from *Liu & Randerson* [2008]

¹observations from *Amiro et al.* [2006] ²observations from *Lyons et al.* [2008] ³observations from *Liu & Randerson* [2008]

¹observations from *Amiro et al.* [2006] ²observations from *Lyons et al.* [2008] ³observations from *Liu & Randerson* [2008]

summer albedo

summer net radiation

summer latent heat

summer sensible heat

spring albedo

spring net radiation

surface temperature anomalies

summer

surface pressure anomalies

summer

Ра

100

0

-100

BAx4.0

boundary layer height anomalies

Conclusions

- used Large Fire databases and MODIS to derive boreal forest cover, succession patterns, burn probabilities, and long-term fire regimes
- with some minor paramaterization changes and the addition of a 'char' PFT, post-fire energy budgets are well-captured in CLM
- increased burning:
 - younger, shorter stands with more deciduous vegetation
 - colder winters
 - modulation of north Pacific pressure systems (?)
 - lowered boundary layer heights
- caveats:
 - prescribed succession and fire
 - succession and burning increases are spatially constant
 - excluded smoke aerosols
- future work:
 - add fire-emitted aerosols, GHGs/carbon balance
 - Eurasian analysis
 - improve dynamic vegetation and fire in boreal systems

References

- Amiro, B. D. (2001), Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest, *Global Change Biology*, 7(3), 253-268.
- Amiro, B. D., A. L. Orchansky, A. G. Barr, T. A. Black, S. D. Chambers, F. S. Chapin III, M. L. Goulden, M. Litvak, H. P. Liu, and J. H. McCaughey (2006), The effect of post-fire stand age on the boreal forest energy balance, *Agricultural and Forest Meteorology*, 140(1-4), 41-50.
- Balshi, M. S., A. D. McGuire, P. Duffy, M. Flannigan, J. Walsh, and J. Melillo (2009), Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach, *Global Change Biology*, 15(3), 578-600.
- Beck, P. S. ., S. J. Goetz, M. C. Mack, H. D. Alexander, Y. Jin, J. T. Randerson, and M. M. Loranty (2011), The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo, *Global Change Biology*.
- Chambers, S. D., J. Beringer, J. T. Randerson, and F. S. Chapin (2005), Fire effects on net radiation and energy partitioning: Contrasting responses of tundra and boreal forest ecosystems, *J. Geophys. Res*, *110*.
- Chambers, S. D., and F. S. Chapin (2002), Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: Implications for feedbacks to regional climate, *Journal of Geophysical Research-Atmospheres*, 107(D1), 8145.
- Jin, Y., J. T. Randerson, S. J. Goetz, P. S. A. Beck, M. M. Loranty, and M. L. Goulden (2012), The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests, *J. Geophys. Res.*, doi:10.1029/2011JG001886 (in press).
- Liu, H., and J. T. Randerson (2008), Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence, *J. Geophys. Res*, *113*.
- Lyons, E. A., Y. Jin, J. T. Randerson, and C. Hall (2008), Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations, J. Geophys. Res, 113.
- McMillan, A. M. ., and M. L. Goulden (2008), Age-dependent variation in the biophysical properties of boreal forests, *Global Biogeochemical Cycles*, 22(2), GB2023.
- Randerson, J. T., H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin, P. G. Hess, G. Pfister, M. C. Mack, K. K. Treseder, and L. R. Welp (2006), The impact of boreal forest fire on climate warming, *Science*, *314*(5802), 1130.

Acknowledgements

Samuel Levis, Amber Soja and the NCAR ASP program

¹observations from *Amiro et al.* [2006] ²observations from *Liu & Randerson* [2008]

¹observations from *Amiro et al.* [2006] ²observations from *Liu & Randerson* [2008]

historical x 0.5

boreal evergreen needleleaf trees

boreal deciduous broadleaf trees

50%

historical x 1

boreal evergreen needleleaf trees

boreal deciduous broadleaf trees

50%

historical x 2

boreal evergreen needleleaf trees

boreal deciduous broadleaf trees

historical x 4

boreal evergreen needleleaf trees

boreal deciduous broadleaf trees

100%

50%

historical x 6

boreal evergreen needleleaf trees

boreal deciduous broadleaf trees

30% 15% 0%

50%