

Global pattern of nitrogen limitation: Confronting two global biogeochemical models with observations

R. Quinn Thomas¹, Sönke Zaehle², Pamela H. Templer³, & Christine L. Goodale¹

- ¹ Department of Ecology and Evolutionary Biology, Cornell University
- ² Max Planck Institute for Biogeochemistry
- ³ Department of Biology, Boston University

• Nitrogen deposition increasing carbon storage (Thomas *et al.* 2010 *Nature Geoscience*)

- Nitrogen deposition increasing carbon storage (Thomas *et al.* 2010 *Nature Geoscience*)
- Soil warming increasing carbon storage (Melillo *et al.* 2011 *PNAS*)

- Nitrogen deposition increasing carbon storage (Thomas et al. 2010 Nature Geoscience)
- Soil warming increasing carbon storage (Melillo *et al.* 2011 *PNAS*)
- Less CO₂ fertilization and smaller increase in carbon storage (Norby et al. 2010 PNAS; Oren et al. 2001 Nature)

- Nitrogen deposition increasing carbon storage (Thomas *et al.* 2010 *Nature Geoscience*)
- Soil warming increasing carbon storage (Melillo *et al.* 2011 *PNAS*)
- Less CO₂ fertilization and smaller increase in carbon storage (Norby *et al.* 2010 *PNAS*; Oren *et al.* 2001 *Nature*)

What are the patterns of nitrogen limitation in global biogeochemical models?

CLM-CN 4.0

(Thornton et al. 2009 Biogeosciences)

O-CN

(Zaehle et al. 2011 Nature Geoscience)

()_()N

(Zaehle et al. 2011 Nature Geoscience)

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

nature geoscience

ERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

()_()NI

(Zaehle et al. 2011 Nature Geoscience)

nature geoscience

ERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

nature geoscience

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

Potential primary productivity (GPP and NPP) limited by nitrogen

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

nature geoscience

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

nature geoscience

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N

Variable Vegetation C:N

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207

nature geoscience

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N

Variable Vegetation C:N

Fixed Soil Organic Matter C:N

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

geoscience PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGE01207 **Carbon benefits of anthropogenic reactive**

nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

nature

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N

Fixed Soil Organic Matter C:N

Variable Vegetation C:N

Variable Soil Organic Matter C:N

Biogeosciences, 6, 2099-2120, 2009

Carbon-nitrogen interactions regulate climate-car cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson⁴, I. Fung⁶, J.-F. Lamarque^{7,8}, J. J. Feddema⁹, and Y.-H. Lee³

(Zaehle et al. 2011 Nature Geoscience)

geoscience PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1207 **Carbon benefits of anthropogenic reactive** nitrogen offset by nitrous oxide emissions

Sönke Zaehle^{1*}, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²

Buffering capacity of C to changes in N \rightarrow

nature

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N

Variable Vegetation C:N

Fixed Soil Organic Matter C:N

Variable Soil Organic Matter C:N

Differing mechanisms governing N loss

Global nitrogen fertilization experiment

- 25 year simulations (1985-2009)
- Nitrogen applied globally at five levels continuously
 - Low application to parallel plausible changes in nitrogen deposition (0.5 g N m⁻² yr⁻¹)
 - Higher applications to parallel field experimental additions of nitrogen fertilizer to terrestrial ecosystems (2.0, 4.0, 10.0 g N m⁻² yr⁻¹)
 - High application to test nitrogen saturation (30.0 g N m⁻² yr⁻¹)
- Same climate inputs and land-use history

Global nitrogen fertilization response: High addition (30.0 g N m⁻² yr⁻¹)

∆Net Primary Productivity (CLM-CN)

Global nitrogen fertilization response: High addition (30.0 g N m⁻² yr⁻¹)

∆Net Primary Productivity (O-CN)

CLM-CN more responsive to nitrogen than O-CN

Model comparison to data: Model response compared to observations

Nitrogen fertilization experiments
¹⁵N tracer studies

▲ Plot/small catchment nitrogen budgets

Thomas et al. In prep. Glob. Ch. Biol.

Model comparison to data: NPP response to N fertilization

Thomas et al. In prep. Glob. Ch. Biol.

Model comparison to data: Plot/Small Catchment Nitrogen Budgets

Thomas et al. In prep. Glob. Ch. Biol.

Observations from NiRENA project: Goodale et al.

Model comparison to data: Plot/Small Catchment Nitrogen Budgets

Thomas et al. In prep. Glob. Ch. Biol.

Observations from NiRENA project: Goodale et al.

Conclusions and Implications

 CLM-CN and O-CN have dramatically different responses to added nitrogen

- CLM-CN and O-CN have dramatically different responses to added nitrogen
 - O-CN: NPP not responsive enough to nitrogen

- CLM-CN and O-CN have dramatically different responses to added nitrogen
 - O-CN: NPP not responsive enough to nitrogen
 - N limitation is too weak

- CLM-CN and O-CN have dramatically different responses to added nitrogen
 - O-CN: NPP not responsive enough to nitrogen
 - N limitation is too weak
 - Are the buffering mechanisms too strong?

- CLM-CN and O-CN have dramatically different responses to added nitrogen
 - O-CN: NPP not responsive enough to nitrogen
 - N limitation is too weak
 - Are the buffering mechanisms too strong?
 - CLM-CN: NPP too responsive to nitrogen

- CLM-CN and O-CN have dramatically different responses to added nitrogen
 - O-CN: NPP not responsive enough to nitrogen
 - N limitation is too weak
 - Are the buffering mechanisms too strong?
 - CLM-CN: NPP too responsive to nitrogen
 - Potential GPP is too high

- CLM-CN and O-CN have dramatically different responses to added nitrogen
 - O-CN: NPP not responsive enough to nitrogen
 - N limitation is too weak
 - Are the buffering mechanisms too strong?
 - CLM-CN: NPP too responsive to nitrogen
 - Potential GPP is too high
 - N retention is too low NPP does not saturate even at 30 g N m⁻² yr⁻¹

 Nitrogen fertilization experiments,¹⁵N tracer studies, and nitrogen budgets

- Nitrogen fertilization experiments,¹⁵N tracer studies, and nitrogen budgets
 - Differentiate among models

- Nitrogen fertilization experiments,¹⁵N tracer studies, and nitrogen budgets
 - Differentiate among models
 - Provide insights into the nature of nitrogen limitation in global biogeochemical models

- Nitrogen fertilization experiments,¹⁵N tracer studies, and nitrogen budgets
 - Differentiate among models
 - Provide insights into the nature of nitrogen limitation in global biogeochemical models
 - Guide model development

- Nitrogen fertilization experiments,¹⁵N tracer studies, and nitrogen budgets
 - Differentiate among models
 - Provide insights into the nature of nitrogen limitation in global biogeochemical models
 - Guide model development
- Current research is focused on developing buffering mechanisms in the CLM-CN (variable C:N tissue ratios)

- Nitrogen fertilization experiments,¹⁵N tracer studies, and nitrogen budgets
 - Differentiate among models
 - Provide insights into the nature of nitrogen limitation in global biogeochemical models
 - Guide model development
- Current research is focused on developing buffering mechanisms in the CLM-CN (variable C:N tissue ratios)
- Future research will focus on testing additional models and expanding the observational data set

Questions?

Questions?

- National Science Foundation
- Cornell Biogeochemistry and Environmental Biocomplexity Program
- Discussion with participants at the 2011 INTERFACE Research Coordination Network meeting in Florida
- Sam Levis and Gordon Bonan at the National Center for Atmospheric Research

Global nitrogen fertilization response (5 yr): High addition (10.0 g N m⁻² yr⁻¹)

∆Net Primary Productivity (CLM-CN)

Global nitrogen fertilization response (5 yr): High addition (10.0 g N m⁻² yr⁻¹)

∆Net Primary Productivity (O-CN)

Thomas et al. In prep. Glob. Ch. Biol.

