

CAM-chem update

Jean-François Lamarque Arlene Fiore (Lamont-Doherty) Peter Hess (Cornell) Liaison: Simone Tilmes

CAM-chem GMDD paper

- Many thanks to all co-authors, especially Louisa, Simone, Peter and Francis.
- Should be available at GMD within a few weeks
- Led to many improvements in diagnostics

http://www.geosci-model-dev-discuss.net/4/2199/2011/gmdd-4-2199-2011.html

CAM-chem GMDD paper

- Discusses all aspects of chemistry in CAMchem
- Defines the MOZART-4 chemistry (not reduced or superfast) + BAM
- Compares simulations MERRA/GEOS-5/online with meteorological fields

Taylor diagrams

Comparison with Emmons' climatology

Participation in ACCMIP

Figure courtesy of V. Naik, GFDL, 2012

AOD aggregated per latitude band Against Aeronet AOD

ChemClim Development Plan (from Breckenridge 2011)

• Top Priority

- Update to MEGAN/include maps when possible
- Improvements to the dry deposition (better link with CLM)
- Coupling chemistry with MAM and CAM5 physics
- HOMME dynamical core
- Medium Priority
 - Update SOA mechanism: Colette Heald's additional SOA species
 - Implementation of FAST-J photolysis rate computation
- Low Priority
 - "Coarse resolution" FV
- Diagnostics:
 - Tools for model result differencing
 - Benchmark numbers: methyl chloroform lifetime, ozone budget terms, methane lifetime, mass-weighted tropospheric OH, lightning NOx, sf(co/nox/isoprene)

ChemClim Development Plan (from Breckenridge 2011)

• Top Priority

- Update to MEGAN/include maps when possible (see L. Emmons' presentation)
- Improvements to the dry deposition (better link with CLM)
- Coupling chemistry with MAM and CAM5 physics
- HOMME dynamical core (DOE funding: A. Conley/P. Lauritzen)
- kPP mechanism
- Box Model or SCAM w/ chemistry

• Medium Priority

- Update SOA mechanism: Colette Heald's additional SOA species (additional work by K. Barsanti)
- Implementation of FAST-J photolysis rate computation (DOE funding: M. Prather/P. Cameron-Smith)
- Conversion of preprocessor to KPP?
- Vertical resolution and model top?
- WACCM lite?
- Low Priority
 - "Coarse resolution" FV
- Diagnostics:
 - Tools for model result differencing
 - Benchmark numbers: methyl chloroform lifetime ozone budget terms, methane lifetime, mass-weighted tropospheric OH, lightning NOx, sf(co/nox/isoprene

Coupling chemistry to MAM3 (1)

- MAM: Modal Aerosol Module (Liu et al., GMDD, 2011: <u>www.geosci-model-dev-discuss.net/4/3485/2011</u>)
- Very simplified chemistry (reads O₃, OH, NO₃ and HO₂ to compute DMS and SO₄ oxidation to H₂SO₄)

coagulation condensation

Coupling chemistry to MAM3 (2)

- Use MOZART mechanism (will also work with reduced NMHC) to provide O_3 , OH, NO₃, HO₂ and H₂O₂
- Modify scheme to include H₂SO₄ (instead of directly making SO₄)
- Use surface area from MAM to compute rate for heterogeneous reactions on tropospheric aerosols

Coupling chemistry to MAM3 (3)

- Remaining issues (that we know ^(C))
 - SOA in MAM not coupled with chemistry
 - Dry deposition is done differently (MAM needs sizedependent scheme)
 - SAD only from Aitken mode
- Status
 - Have performed several multi-year simulations for present-day, F case only
 - Initial evaluation (including clouds) indicates reasonable results
 - Code will be released in June 2012
 - Similar effort in WRF-chem
 - Evaluation in S. Tilmes' talk

SOA (from C. Heald)

- Current version: two-product method (Lack et al., 2004)
- From Colette Heald (Heald et al., JGR, 2008)
 - Two-product method with high- and low-NO_x yields
 - Additional anthropogenic precursors (benzene, tolueneand xylene) and isoprene
 - Split SOA into classes (one per precursor)
 - T-dependent partitioning between gas-phase and solid-phase (following Chung and Seinfeld, 2002)
 - Adds 13 species

Comparison w/ Heald et al. (2008)

SOA (isoprene)

Simulation is for one-year only

Altítude

0.400

0.350

0.300

0.250

0.200

0.150

0.100

0.0500

0.00

Comparison w/ Heald et al. (2008)

SOA (aromatics)

Approximately 2x SOA from aromatics

- Bug?
- Emissions?

Next steps: CSL allocation

• Development

- New chemistry (halogen/CRI)
- High-resolution (at least 0.5°)
- Vertical resolution
- SE dynamical core (ultimately with varying resolution!)
- Production
 - Chemistry-climate response to regional forcing
 - Benchmark simulations for CAM5-chem FV
 - ≻PI control
 - ≻4xCO₂

Chemistry-climate coupling: BC

Teng et al., in preparation