

Jean-Francois Lamarque, Louisa Emmons, Francis Vitt, ArezooKhodayari

Introduction

- Ozone Comparison
- Aircraft Climatology
- 🛛 OH
- Aerosols

Simone Tilmes, Chemistry-Climate Working Group Meeting, 29 February 2012

The Community Atmospheric Model (CAM)

Model	CAM3	CAM4	CAM5
Release	June 2004	April 2010	June 2010
Shallow Convection	Hack (1994)	Hack (1994)	Park et al. (2009)
Deep Convection	Zhang and McFarlane (1995)	Neale et al. (2008)	Neale et al. (2008)
Microphysics	Raschand Kristjansson(1998)	Rasch and Kristjansson (1998)	Morrison and Gettelman(2008)
Macrophysics	Rasch and Kristjansson (1998)	Rasch and Kristjansson (1998)	Park et al. (2011)
Radiation	Collins et al. (2001)	Collins et al. (2001)	laconoet al. (2008)
Aerosols	Bulk Aerosol Model	Bulk Aerosol Model BAM	Modal Aerosol Model Ghan et al. (2011)
Dynamics	Spectral	Finite Volume	Finite Volume

Compsets	Model (phys)/ radiation	Chemistry	Components / Meteorology
B_2000_TROP_MOZART (BMOZ) F_2000_TROP_MOZART (FMOZ)	CAM4, active CAM4, passive	trop_mozart trop_mozart	All active Prescr. ocn/ice, CLM dry
F_2000_MOZMAM (FMOZMAM) F_2000_STRATMAM_TSC (FMOZMAM)	CAM5, passive	trop_mozart trop/ strat_mozart	GEOS5 (56lev)
		trop_mozart	
F_SD_CAMCHEM (FSDCHM) F_SD_BAM (FSDBAM)	CAM4, passive	trop_mozart trop_bam	Prescr. ocn/ice, clm dry dep, offline: GEOS5 (56lev), CN-cycle
F_TROP_STRAT_CHEM (FTSC)	CAM4, passive	trop/strat_moz art	Prescr. ocn/ice, clm dry dep, CN-cycle
B_2000_CN_CHEM (B2000CNCHM) B_1850_CN_CHEM (B1850CNCHM) F_1850_CN_CHEM (F1850CNCHM) B_1850-2000_CN_CHEM (B20TRCNCHM)	CAM4, active	super_fast_llnl	MEGAN VOC emis CLM dry dep, land nitrogen cycle

Simulations

CAM5Chem 2000

extended trop/start_mozart chemistry (12 years) RCP4.5 emissions, TMS turned on

CAM4Chem 2000-2006

extended trop/strat_mozart chemistry + VSLspecies POET/GFED emissions, TMS turned off

Ozone Climatology

- NH polar West
- NH polar East
- Canada
- * US
- Western Europe
- Japan
- * NH Subtropics
- W–Pacific/E–India
- equat.Americas
- Atlantic/Africa
- SH mid–lat
- * SH polar

Tilmes et al., ACPD 2011

Comparison of Ozone Profiles: Model (solid), Data (dashed)

Seasonal Cycles: Data, CAM5Chem, CAM4Chem

Normalized deviation from the observed annual mean Versus Correlation coefficient Between models and **Observations** (seasonality)

900 hPa

NESL

CAM5Chem CAM4Chem

0.99

1.0

Model (solid), Data (dashed)

CAM5Chem

aircraft campaigns

1-3km above TP

UTLS Profiles: Model (solid), Data (dashed)

Ozone in the LMS too high in CAM5

NESI

Seasonal Cycles: Data, CAM5Chem, CAM4Chem

Ozone, CAM5Chem – CAM4Chem

CAM5Chem – CAM4Chem

OH Comparisons, Model, Spivakovsky Climatology

Aerosols: CAM4 bulk scheme, CAM5 modal aerosol model (MAM)

Fig. 2. Predicted species for interstitial and cloud-borne component of each aerosol mode in MAM3. Standard deviation for each mode is 1.6 (Aitken), 1.8 (accumulation) and 1.8 (coarse mode).

Community Earth System Model

CAM5Chem CAM4Chem IMPROVE

Conclusions

- Realistic representation of tropospheric chemistry for both CAM4Chem and CAM5Chem
- High bias in surface ozone in summer for Europe and Easter US and low bias for Japan, in both simulations
- Differences at the surface are likely due to different emissions
- High bias of ozone in CAM5Chem compared to CAM4Chem in the stratosphere, different presentation of the TMS with impact on the dynamics
- Low bias of temperature in the stratosphere in CAM5Chem
- OH reduced in CAM5Chem (more realistic altitude distribution)

Improved representation of sulfates in CAM5Chem

CAM5Chem

Community Earth System Model

years

Model (solid), Data (dashed)

CAM5Chem

